We analyze double Higgs boson production at the Large Hadron Collider in the context of Little Higgs models. In double Higgs production, the diagrams involved are directly related to those that cause the cancellation of the quadratic divergence of the Higgs self-energy, providing a robust prediction for this class of models. We find that in extensions of this model with the inclusion of a so-called T-parity, there is a significant enhancement in the cross sections as compared to the Standard Model. * Electronic address: claudio.dib@usm.cl † Electronic address: rosenfel@ift.unesp.br ‡ Electronic address: alfonsozerwekh@uach.cl
Motivated by new models of dynamical electroweak symmetry breaking that predict a light composite higgs boson, we build an effective lagrangian which describes the Standard Model (with a light Higgs) and vector resonances. We compute the cross section for the associate production of a higgs and a gauge boson. For some values of model parameters we find that the cross section is significantly enhanced with respect to the Standard Model. This enhancement is similar at the LHC and the Tevatron for the same range of resonance mass.
In this work we present a simple extension of the Standard Model that contains, as the only new physics component, a massive spin-one matter field in the adjoint representation of SU (2) L . In order to be consistent with perturbative unitarity, the vector field must be odd under a Z 2 symmetry. Radiative corrections make the neutral component of the triplet (V 0 ) slightly lighter than the charged ones. We show that V 0 can be the dark matter particle while satisfying all current bounds if it has a mass between 2.8 and 3.8 TeV. We present the current limit on the model parameter space from highly complementary experimental constraints including dark matter relic density measurement, dark matter direct and indirect detection searches, LHC data on Higgs couplings to photons and LHC data on disappearing track searches. We also show that the two-dimensional parameter space can be fully covered by disappearing track searches at a future 100 TeV hadron collider, which will probe, in particular, the whole mass range relevant for dark matter, thus giving an opportunity to discover or exclude the model. * a.belyaev@soton.ac.uk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.