BACKGROUND Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. METHODS We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. RESULTS Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L–mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)–pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L–mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. CONCLUSIONS Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann–La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.)
We generated cell lines resistant to BRAF inhibitors and show that the EGF receptor (EGFR)-SRC family kinase (SFK)-STAT3 signaling pathway was upregulated in these cells. In addition to driving proliferation of resistant cells, this pathway also stimulated invasion and metastasis. EGFR inhibitors cooperated with BRAF inhibitors to block the growth of the resistant cells in vitro and in vivo , and monotherapy with the broad specifi city tyrosine kinase inhibitor dasatinib blocked growth and metastasis in vivo . We analyzed tumors from patients with intrinsic or acquired resistance to vemurafenib and observed increased EGFR and SFK activity. Furthermore, dasatinib blocked the growth and metastasis of one of the resistant tumors in immunocompromised mice. Our data show that BRAF inhibitor-mediated activation of EGFR-SFK-STAT3 signaling can mediate resistance in patients with BRAF-mutant melanoma. We describe 2 treatments that seem to overcome this resistance and could deliver therapeutic effi cacy in patients with drug-resistant BRAF-mutant melanoma. SIGNIFICANCE:Therapies that target the driver oncogenes in cancer can achieve remarkable responses if patients are stratifi ed for treatment. However, as with conventional therapies, patients often develop acquired resistance to targeted therapies, and a proportion of patients are intrinsically resistant and fail to respond despite the presence of an appropriate driver oncogene mutation. We found that the EGFR/SFK pathway mediated resistance to vemurafenib in BRAF -mutant melanoma and that BRAF and EGFR or SFK inhibition blocked proliferation and invasion of these resistant tumors, providing potentially effective therapeutic options for these patients. Cancer Discov; 3(2);
We report the isolation and characterization of bisadducts of fulleropyrrolidine derivatives. The compounds were characterized by means of a variety of spectroscopic techniques, including ES-MS, UV-vis, (1)H NMR, and (13)C NMR. The whole series of bisadducts was separated for the first time in the case of the bispyrrolidines, and the determination of their structure was obtained by NMR spectroscopy with the help of HMQC and HMBC techniques.
BRAF is a serine-threonine-specific protein kinase that is mutated in 2% of human cancers. Oncogenic BRAF is a validated therapeutic target that constitutively activates mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling, driving tumor cell proliferation and survival. Drugs designed to target BRAF have been developed, but it is difficult to prove that they mediate their antitumor effects by inhibiting BRAF rather than by working through off-target effects. We generated drug-resistant versions of oncogenic BRAF by mutating the gatekeeper residue. Signaling by the mutant proteins was resistant to the small-molecule inhibitor sorafenib, but sorafenib still inhibited the growth of tumors driven by the mutant protein. In contrast, both BRAF signaling and tumor growth were resistant to another RAF drug, PLX4720. These data provide unequivocal evidence that sorafenib mediates its antitumor effects in a manner that is independent of its ability to target oncogenic BRAF, whereas PLX4720 inhibits tumor growth by targeting oncogenic BRAF directly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.