SummaryThe mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant BrafV600E mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in BrafV600E mouse melanoma cells, as well as in NrasG12D melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients.
SummaryIntravital imaging of BRAF-mutant melanoma cells containing an ERK/MAPK biosensor reveals how the tumor microenvironment affects response to BRAF inhibition by PLX4720. Initially, melanoma cells respond to PLX4720, but rapid reactivation of ERK/MAPK is observed in areas of high stromal density. This is linked to “paradoxical” activation of melanoma-associated fibroblasts by PLX4720 and the promotion of matrix production and remodeling leading to elevated integrin β1/FAK/Src signaling in melanoma cells. Fibronectin-rich matrices with 3–12 kPa elastic modulus are sufficient to provide PLX4720 tolerance. Co-inhibition of BRAF and FAK abolished ERK reactivation and led to more effective control of BRAF-mutant melanoma. We propose that paradoxically activated MAFs provide a “safe haven” for melanoma cells to tolerate BRAF inhibition.
We generated cell lines resistant to BRAF inhibitors and show that the EGF receptor (EGFR)-SRC family kinase (SFK)-STAT3 signaling pathway was upregulated in these cells. In addition to driving proliferation of resistant cells, this pathway also stimulated invasion and metastasis. EGFR inhibitors cooperated with BRAF inhibitors to block the growth of the resistant cells in vitro and in vivo , and monotherapy with the broad specifi city tyrosine kinase inhibitor dasatinib blocked growth and metastasis in vivo . We analyzed tumors from patients with intrinsic or acquired resistance to vemurafenib and observed increased EGFR and SFK activity. Furthermore, dasatinib blocked the growth and metastasis of one of the resistant tumors in immunocompromised mice. Our data show that BRAF inhibitor-mediated activation of EGFR-SFK-STAT3 signaling can mediate resistance in patients with BRAF-mutant melanoma. We describe 2 treatments that seem to overcome this resistance and could deliver therapeutic effi cacy in patients with drug-resistant BRAF-mutant melanoma. SIGNIFICANCE:Therapies that target the driver oncogenes in cancer can achieve remarkable responses if patients are stratifi ed for treatment. However, as with conventional therapies, patients often develop acquired resistance to targeted therapies, and a proportion of patients are intrinsically resistant and fail to respond despite the presence of an appropriate driver oncogene mutation. We found that the EGFR/SFK pathway mediated resistance to vemurafenib in BRAF -mutant melanoma and that BRAF and EGFR or SFK inhibition blocked proliferation and invasion of these resistant tumors, providing potentially effective therapeutic options for these patients. Cancer Discov; 3(2);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.