Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Arabidopsis COP1 acts as a light-inactivable repressor of photomorphogenic development, but its molecular mode of action remains unclear. Here, we show that COP1 negatively regulates HY5, a bZIP protein and a positive regulator of photomorphogenic development. Both in vitro and in vivo assays indicate that COP1 interacts directly and specifically with HY5. The hyperphotomorphogenic phenotype caused by the over-expression of a mutant HY5, which lacks the COP1-interactive domain, supports the regulatory role of HY5-COP1 interaction. Further, HY5 is capable of directly interacting with the CHS1 minimal promoter and is essential for its light activation. We propose that the direct interaction with and regulation of transcription factors by COP1 may represent the molecular mechanism for its control of gene expression and photomorphogenic development.
Cryptochromes are blue light-sensing photoreceptors found in plants, animals, and humans. They are known to play key roles in the regulation of the circadian clock and in development. However, despite striking structural similarities to photolyase DNA repair enzymes, cryptochromes do not repair double-stranded DNA, and their mechanism of action is unknown. Recently, a blue light-dependent intramolecular electron transfer to the excited state flavin was characterized and proposed as the primary mechanism of light activation. The resulting formation of a stable neutral flavin semiquinone intermediate enables the photoreceptor to absorb green/yellow light (500 -630 nm) in addition to blue light in vitro. Here, we demonstrate that Arabidopsis cryptochrome activation by blue light can be inhibited by green light in vivo consistent with a change of the cofactor redox state. We further characterize light-dependent changes in the cryptochrome1 (cry1) protein in living cells, which match photoreduction of the purified cry1 in vitro. These experiments were performed using fluorescence absorption/emission and EPR on whole cells and thereby represent one of the few examples of the active state of a known photoreceptor being monitored in vivo. These results indicate that cry1 activation via blue light initiates formation of a flavosemiquinone signaling state that can be converted by green light to an inactive form. In summary, cryptochrome activation via flavin photoreduction is a reversible mechanism novel to blue light photoreceptors. This photocycle may have adaptive significance for sensing the quality of the light environment in multiple organisms.
Cryptochrome (Cry) photoreceptors share high sequence and structural similarity with DNA repair enzyme DNA-photolyase and carry the same flavin cofactor. Accordingly, DNA-photolyase was considered a model system for the light activation process of cryptochromes. In line with this view were recent spectroscopic studies on cryptochromes of the CryDASH subfamily that showed photoreduction of the flavin adenine dinucleotide (FAD) cofactor to its fully reduced form. However, CryDASH members were recently shown to have photolyase activity for cyclobutane pyrimidine dimers in single-stranded DNA, which is absent for other members of the cryptochrome/photolyase family. Thus, CryDASH may have functions different from cryptochromes. The photocycle of other members of the cryptochrome family, such as Arabidopsis Cry1 and Cry2, which lack DNA repair activity but control photomorphogenesis and flowering time, remained elusive. Here we have shown that Arabidopsis Cry2 undergoes a photocycle in which semireduced flavin (FADH ⅐ ) accumulates upon blue light irradiation. Green light irradiation of Cry2 causes a change in the equilibrium of flavin oxidation states and attenuates Cry2-controlled responses such as flowering. These results demonstrate that the active form of Cry2 contains FADH ⅐ (whereas catalytically active photolyase requires fully reduced flavin (FADH ؊ )) and suggest that cryptochromes could represent photoreceptors using flavin redox states for signaling differently from DNA-photolyase for photorepair.Blue light signaling has been historically of great interest in plants, because distinct blue light receptors are involved in such key processes as photomorphogenesis, phototropism, and initiation of flowering (1). Cryptochromes (Crys) 2 are UV-A/blue light photoreceptors (also found in animals and bacteria (2)) and are implicated in several of these responses. Because of their high sequence and structural similarity (3-6) and identical flavin cofactor content as DNA-photolyase (7, 8), it was hypothesized that cryptochromes might use the same mechanism for signaling as does photolyase for catalysis, which is light-driven electron transfer from the fully reduced flavin FADH Ϫ (2, 4, 7-9). Indeed, spectroscopic studies on Vibrio cholerae Cry1 (10) and Arabidopsis Cry3 (11) have shown that blue light illumination results in the formation of fully reduced flavin similar to the photoactivation process of DNA-photolyase (2). However, CryDASH members were recently shown to have photolyase activity for cyclobutane pyrimidine dimers in single-stranded DNA (12), which is absent for other members of the cryptochrome/photolyase family.The photoreduction of flavin in DNA-photolyase involves several aromatic amino acid residues (mostly tryptophans) that transfer electrons from the protein surface to the flavin adenine dinucleotide (FAD), which is buried in a U-shaped conformation in the ␣-helical domain of the protein (13-16). The cryptochrome structures solved so far, namely Synechocystis Cry-DASH (3), the photolyase-related d...
The putative blue-light photoreceptor genes of Arabidopsis thaliana and Sinapis alba (mustard) are highly homologous to the DNA repair genes encoding DNA photolyases. The photoreceptors from both organisms were overexpressed in Escherichia coli, purified, and characterized. The photoreceptors contain two chromophores which were identified as flavin adenine dinucleotide and methenyltetrahydrofolate. This chromophore composition suggests that the blue light photoreceptor may initiate signal transduction by a novel pathway which involves electron transfer. Despite the high degree of sequence identity to and identical chromophore composition with photolyases, neither photoreceptor has any photoreactivating activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.