The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 Ǻ resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and Cys151 are distant of 13.8 Ǻ although these two cysteine residues are thought to be involved in peroxide reductase activity by forming an intramolecular disulfide intermediate in the oxidized enzyme. These data suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible role of benzoate in the antioxidant activity of PRDX5 is discussed.
In a cross-sectional population study to assess whether environmental exposure to cadmium is associated with renal dysfunction, 1699 subjects aged 20-80 years were studied as a random sample of four areas of Belgium with varying degrees of cadmium pollution. After standardisation for several possible confounding factors, five variables (urinary excretion of retinol-binding protein, N-acetyl-beta-glucosaminidase, beta 2-microglobulin, aminoacids, and calcium) were significantly associated with the urinary excretion of cadmium (as a marker of cadmium body burden), suggesting the presence of tubular dysfunction. There was a 10% probability of values of these variables being abnormal when cadmium excretion exceeded 2-4 micrograms/24 h. Excretion reached this threshold in 10% of non-smokers. There was also evidence that diabetic patients may be more susceptible to the toxic effect of cadmium on the renal proximal tubule.
Clara cell protein (CC16) is a 15.8-kDa homodimeric protein secreted in large amounts in airways by the non-ciliated bronchiolar Clara cells. This protein increasingly appears to protect the respiratory tract against oxidative stress and inflammation. In vitro, CC16 has been shown to modulate the production and/or the activity of various mediators of the inflammatory response including PLA2, interferon-gamma and tumour necrosis factor-alpha. CC16 has also been found to inhibit fibroblast migration or to bind various endogenous or exogenous substances such as polychlorobiphenyls (PCBs). This protective role is confirmed by studies on transgenic mice, showing that CC16 deficiency is associated with an increased susceptibility of the lung to viral infections and oxidative stress. In humans, a polymorphism of the CC16 gene, localized to a region linked to airway diseases, has recently been discovered in association with an increased risk of developing childhood asthma. Finally, CC16 also presents a major interest as a peripheral marker for assessing the integrity of the lung epithelium. The determination of CC16 in serum is a new non-invasive test to detect Clara cell damage or an increased epithelial permeability in various acute and chronic lung disorders.
The pool chlorine hypothesis postulates that the rise in childhood asthma in the developed world could result at least partly from the increasing exposure of children to toxic gases and aerosols contaminating the air of indoor chlorinated pools. To further assess this hypothesis, we explored the relationships between childhood asthma, atopy, and cumulated pool attendance (CPA). We studied 341 schoolchildren 10–13 years of age who attended at a variable rate the same public pool in Brussels (trichloramine in air, 0.3–0.5 mg/m3). Examination of the children included a questionnaire, an exercise-induced bronchoconstriction (EIB) test, and the measurement of exhaled nitric oxide (eNO) and total and aeroallergen-specific serum IgE. CPA by children (range, 0–1,818 hr) emerged among the most consistent predictors of asthma (doctor diagnosed or screened with the EIB test) and of elevated eNO, ranking immediately after atopy and family history of asthma or hay fever. Although the risk of elevated eNO increased with CPA [odds ratio (OR) = 1.30; 95% confidence interval (CI), 1.10–1.43] independently of total or specific serum IgE, the probability of developing asthma increased with CPA only in children with serum IgE > 100 kIU/L (OR for each 100-hr increase in CPA = 1.79; 95% CI, 1.07–2.72). All these effects were dose related and most strongly linked to pool attendance before 6–7 years of age. Use of indoor chlorinated pools especially by young children interacts with atopic status to promote the development of childhood asthma. These findings further support the hypothesis implicating pool chlorine in the rise of childhood asthma in industrialized countries.
Aims: To study whether exposure to nitrogen trichloride in indoor chlorinated pools may affect the respiratory epithelium of children and increase the risk of some lung diseases such as asthma. Methods: In 226 healthy children, serum surfactant associated proteins A and B (SP-A and SP-B), 16 kDa Clara cell protein (CC16), and IgE were measured. Lung specific proteins were measured in the serum of 16 children and 13 adults before and after exposure to NCl 3 in an indoor chlorinated pool. Relations between pool attendance and asthma prevalence were studied in 1881 children. Asthma was screened with the exercise induced bronchoconstriction test (EIB). Results: Pool attendance was the most consistent predictor of lung epithelium permeability. A positive dose-effect relation was found with cumulated pool attendance and serum SP-A and SP-B. Serum IgE was unrelated to pool attendance, but correlated positively with lung hyperpermeability as assessed by serum SP-B. Changes in serum levels of lung proteins were reproduced in children and adults attending an indoor pool. Serum SP-A and SP-B were already significantly increased after one hour on the pool side without swimming. Positive EIB and total asthma prevalence were significantly correlated with cumulated pool attendance indices. Conclusions: Regular attendance at chlorinated pools by young children is associated with an exposure dependent increase in lung epithelium permeability and increase in the risk of developing asthma, especially in association with other risk factors. We therefore postulate that the increasing exposure of children to chlorination products in indoor pools might be an important cause of the rising incidence of childhood asthma and allergic diseases in industrialised countries. Further epidemiological studies should be undertaken to test this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.