To determine animal hepatitis E virus (HEV) reservoirs, we analyzed serologic and molecular markers of HEV infection among wild animals in Germany. We detected HEV genotype 3 strains in inner organs and muscle tissues of a high percentage of wild boars and a lower percentage of deer, indicating a risk for foodborne infection of humans.
Introduction. Since 2013, European soldiers have been deployed on the European Union Training Mission (EUTM) in Mali. From the beginning, diarrhea has been among the most “urgent” concerns. Diarrhea surveillance based on deployable real-time PCR equipment was conducted between December 2013 and August 2014. Material and Methods. In total, 53 stool samples were obtained from 51 soldiers with acute diarrhea. Multiplex PCR panels comprised enteroinvasive bacteria, diarrhea-associated Escherichia coli (EPEC, ETEC, EAEC, and EIEC), enteropathogenic viruses, and protozoa. Noroviruses were characterized by sequencing. Cultural screening for Enterobacteriaceae with extended-spectrum beta-lactamases (ESBL) with subsequent repetitive sequence-based PCR (rep-PCR) typing was performed. Clinical information was assessed. Results. Positive PCR results for diarrhea-associated pathogens were detected in 43/53 samples, comprising EPEC (n = 21), ETEC (n = 19), EAEC (n = 15), Norovirus (n = 10), Shigella spp./EIEC (n = 6), Cryptosporidium parvum (n = 3), Giardia duodenalis (n = 2), Salmonella spp. (n = 1), Astrovirus (n = 1), Rotavirus (n = 1), and Sapovirus (n = 1). ESBL-positive Enterobacteriaceae were grown from 13 out of 48 samples. Simultaneous infections with several enteropathogenic agents were observed in 23 instances. Symptoms were mild to moderate. There were hints of autochthonous transmission. Conclusions. Multiplex real-time PCR proved to be suitable for diarrhea surveillance on deployment. Etiological attribution is challenging in cases of detection of multiple pathogens.
Human norovirus (NoV) is the most frequent cause of epidemic nonbacterial acute gastroenteritis worldwide. We investigated the impact of nonthermal or cold atmospheric pressure plasma (CAPP) on the inactivation of a clinical human outbreak NoV, GII.4. Three different dilutions of a NoV-positive stool sample were prepared and subsequently treated with CAPP for various lengths of time, up to 15 min. NoV viral loads were quantified by quantitative real-time reverse transcription PCR (RT-qPCR). Increased CAPP treatment time led to increased NoV reduction; samples treated for the longest time had the lowest viral load. From the initial starting quantity of 2.36 × 104 genomic equivalents/ml, sample exposure to CAPP reduced this value by 1.23 log10 and 1.69 log10 genomic equivalents/ml after 10 and 15 min, respectively (P < 0.01). CAPP treatment of surfaces carrying a lower viral load reduced NoV by at least 1 log10 after CAPP exposure for 2 min (P < 0.05) and 1 min (P < 0.05), respectively. Our results suggest that NoV can be inactivated by CAPP treatment. The lack of cell culture assays prevents our ability to estimate infectivity. It is possible that some detectable, intact virus particles were rendered noninfectious. We conclude that CAPP treatment of surfaces may be a useful strategy to reduce the risk of NoV transmission in crowded environments.Importance Human gastroenteritis is most frequently caused by noroviruses, which are spread person to person and via surfaces, often in facilities with crowds of people. Disinfection of surfaces that come into contact with infected humans is critical for the prevention of cross-contamination and further transmission of the virus. However, effective disinfection cannot be done easily in mass catering environments or health care facilities. We evaluated the efficacy of cold atmospheric pressure plasma, an innovative airborne disinfection method, on surfaces inoculated with norovirus. We used a clinically relevant strain of norovirus from an outbreak in Germany. Cold plasma was able to inactivate the virus on the tested surfaces, suggesting that this method could be used for continuous disinfection of contaminated surfaces. The use of a clinical strain of norovirus strengthens the reliability of our results as it is a strain relevant to outbreaks in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.