The present paper deals with the identification and maximum likelihood estimation of systems of linear stochastic differential equations using panel data. So we only have a sample of discrete observations over time of the relevant variables for each individual. A popular approach in the social sciences advocates the estimation of the "exact discrete model" after a reparameterization with LISREL or similar programs for structural equations models. The "exact discrete model" corresponds to the continuous time model in the sense that observations at equidistant points in time that are generated by the latter system also satisfy the former. In the LISREL approach the reparameterized discrete time model is estimated first without taking into account the nonlinear mapping from the continuous to the discrete time parameters. In a second step, using the inverse mapping, the fundamental system parameters of the continuous time system in which we are interested, are inferred. However, some severe problems arise with this "indirect approach". First, an identification problem may arise in multiple equation systems, since the matrix exponential function denning some of the new parameters is in general not one-to-one, and hence the inverse mapping mentioned above does not exist. Second, usually some sort of approximation of the time paths of the exogenous variables is necessary before the structural parameters of the system can be estimated with discrete data. Two simple approximation methods are discussed. In both approximation methods the resulting new discrete time parameters are connected in a complicated way. So estimating the reparameterized discrete model by OLS without restrictions does not yield maximum likelihood estimates of the desired continuous time parameters as claimed by some authors. Third, a further limitation of estimating the reparameterized model with programs for structural equations models is that even simple restrictions on the original fundamental parameters of the continuous time system cannot be dealt with. This issue is also discussed in some detail. For these reasons the "indirect method" cannot be recommended. In many cases the approach leads to misleading inferences. We strongly advocate the direct estimation of the continuous time parameters. This approach is more involved, because the exact discrete model is nonlinear in the original parameters. A computer program by Hermann Singer that provides appropriate maximum likelihood estimates is described.
This paper deals with the identification and maximum likelihood estimation of the parameters of a stochastic differential equation from discrete time sampling. Score function and maximum likelihood equations are derived explicitly. The stochastic differential equation system is extended to allow for random effects and the analysis of panel data. In addition, we investigate the identifiability of the continuous time parameters, in particular the impact of the inclusion of exogenous variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.