A gene of Lactococcus lactis subsp. cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells. In cell extracts of L. lactis MG1363 and several halo-producing E. coli transformants, lytic bands of similar sizes were identified by denaturing sodium dodecyl sulfate (SDS)-polyacrylamide gels containing L. lactis or M. lysodeikticus cell walls. Of these clearing bands, corresponding to the presence of lytic enzymes with sizes of 46 and 41 kDa, the 41-kDa band was also present in the supernatant of an L. lactis culture. Deletion analysis of one of the recombinant plasmids showed that the information specifying lytic activity was contained within a 2,428-bp EcoRV-Sau3A fragment. Sequencing of part of this fragment revealed a gene (acmA) that could encode a polypeptide of 437 amino acid residues. The calculated molecular mass of AcmA (46,564 Da) corresponded to that of one of the lytic activities detected. Presumably, the enzyme is synthesized as a precursor protein which is processed by cleavage after the Ala at position 57, thus producing a mature protein with a size of 40,264 Da, which would correspond to the size of the enzyme whose lytic activity was present in culture supernatants of L. lactis. The N-terminal region of the mature protein showed 60% identity with the N-terminal region of the mature muramidase-2 of Enterococcus hirae and the autolysin of Streptococcus faecalis. Like the latter two enzymes, AcmA contains C-terminal repeated regions. In AcmA, these three repeats are separated by nonhomologous intervening sequences highly enriched in serine, threonine, and asparagine. Genes specifying identical activities were detected in various strains of L. lactis subsp. lactis and L. lactis subsp. cremoris by the SDS-polyacrylamide gel electrophoresis detection assay and PCR experiments. By replacement recombination, an acmA deletion mutant which grew as long chains was constructed, indicating that AcmA is required for cell separation.
A system for generating chromosomal insertions in lactococci is described. It is based on the conditional replication of lactococcal pWV01-derived Ori ؉ RepA ؊ vector pORI19, containing lacZ␣ and the multiple cloning site of pUC19. Chromosomal AluI fragments of Lactococcus lactis were cloned in pORI19 in RepA ؉ helper strain Escherichia coli EC101. The frequency of Campbell-type recombinants, following introduction of this plasmid bank into L. lactis (RepA ؊ ), was increased by combining the system with temperature-sensitive pWV01 derivative pVE6007. Transformation of L. lactis MG1363(pVE6007) with the pORI19 bank of lactococcal chromosomal fragments at the permissive temperature allowed replication of several copies of a recombinant plasmid from the bank within a cell because of the provision in trans of RepA-Ts from pVE6007. A temperature shift to 37؇C resulted in loss of pVE6007 and integration of the pORI19 derivatives at high frequencies. A bank of lactococcal mutants was made in this way and successfully screened for the presence of two mutations: one in the monocistronic 1.3-kb peptidoglycan hydrolase gene (acmA) and one in the hitherto uncharacterized maltose fermentation pathway. Reintroduction of pVE6007 into the Mal ؊ mutant at 30؇C resulted in excision of the integrated plasmid and restoration of the ability to ferment maltose. The integration plasmid (pMAL) was rescued by using the isolated plasmid content of a restored Mal ؉ colony to transform E. coli EC101. Nucleotide sequencing of the 564-bp chromosomal fragment in pMAL revealed an internal part of an open reading frame of which the translated product showed significant homology with ATP-binding proteins MalK of E. coli, Salmonella typhimurium, and Enterobacter aerogenes and MsmK of Streptococcus mutans. This combined use of two types of conditional replicating pWV01-derived vectors represents a novel, powerful tool for chromosomal gene inactivation, targeting, cloning, and sequencing of the labelled gene.Considerable effort in recent years has focussed on the development of gene tagging and targeting techniques by insertions in the lactococcal genome to facilitate chromosomal gene analysis and gene cloning. Chromosomal integration and gene inactivation in Lactococcus lactis have been achieved by using the conjugative transposable elements Tn916, Tn919, and Tn1545 (9). A gene targeting and cloning system based on the Tn919 and Tn916 family of transposons was used for the cloning of streptococcal genes (11,12,38). However, it was subsequently shown (17) that this system could not be successfully applied to lactococci. Although chromosomal mutations in the genes involved in citrate metabolism have been obtained in L. lactis subsp. lactis biovar diacetylactis 18-16 by using Tn919, the activity of this transposon is apparently strain dependent and transposition appears to be site specific in L. lactis MG1363 (17). Recently, a potentially useful system based on the lactococcal insertion sequence IS946 was studied and random integration in L. lactis w...
The nucleotide sequence of a chromosomal DNA fragment of Lactococcus lactis subsp. lactis SSL135, previously implicated in peptide utilization, has been determined. The genes oppDFBCA, encoding the oligopeptide transport system (Opp), and that encoding the endopeptidase PepO were located on this 8.9-kb DNA fragment. The oppDFBCA and pepO genes are probably organized in an operon. Analysis of the deduced amino acid sequences of the genes indicated that the oligopeptide transport system consists of two ATP-binding proteins OppD and OppF, two integral membrane proteins OppB and OppC, and a substrate-binding protein OppA. On the basis of the homology of OppF and OppD of L. lactis with other ABC (ATP-binding cassette) transporter proteins, the L. lactis Opp system can be classified as a member of this group. Two integration mutants, one defective in OppA and the other defective in PepO, were constructed. Growth of these mutants in a chemically defined medium with oligopeptides showed that the transport system, but not the endopeptidase, is essential for the utilization of peptides longer than three residues. Uptake of the pentapeptide Leu-enkephalin in glycolyzing lactococcal cells was followed by rapid hydrolysis of the peptide intracellularly.
In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.