The adaptive radiation of modern New World monkeys unfolded as the major lineages diversified within different dietary-adaptive zones predicated upon a fundamentally frugivorous habit. The broad outlines of this pattern can be seen in the fossil record, beginning in the early Miocene. Cebids are obligate frugivorous predators. The smallest forms (Cebuella, Callithrix) are specialized exudativores, and the largest (cebines) are seasonally flexible omnivores, feeding particularly on insects (Saimiri) or "hard" foods, such as pith and palm nuts (Cebus), when resources are scarce. The smaller-bodied atelids (Callicebus, Aotus) may use insects or leaves opportunistically, but pitheciins (saki-uakaris) specialize on seeds as their major protein source. The larger atelines (Alouatta, Brachyteles) depend on leaves or on ripe fruit (Ateles). Locomotion, body size, and dietary adaptations are linked: claws and small body size opened the canopy-subcanopy niche to callitrichines; climbing and hanging, the fine-branch setting to the atelines; large size and strength, semiprehensile tails, and grasping thumbs, the extractive insectivory of Cebus; deliberate quadrupedalism, the energy-saving transport of folivorous Alouatta. Body size increases and decreases occurred often and in parallel within guilds and lineages. Conventional dietary categories, particularly frugivory, are inadequate for organizing the behavioral and anatomical evidence pertinent to evolutionary adaptation. Related models of morphological evolution based on feeding frequencies tend to obfuscate the selective importance of "critical functions," responses to the biomechanically challenging components of diet that may be determined by a numerically small, or seasonal, dietary fraction. For fossils, body size is an unreliable indicator of diet in the absence of detailed morphological information. More attention needs to be given to developing techniques for identifying and quantifying mechanically significant aspects of dental form, the physical properties of primate foods, their mode of access, and the cycles of availability and nutritional value.
Mechanico-functional features of molar form were studied in Callithrix, Alouatta, Pithecia and Cebus. Molars of Callithrix and Alouatta are adapted to loading foods under relatively high occlusal pressure; those of Pithecia and Cebus, under relatively low occlusal pressure. General functional considerations suggest that these taxa are adapted to insectivorous, folivorous, frugivorous and omnivorous diets, respectively. The physical properties of foods, principally mechanical strength and deformability, determine the selective pressures involved in the evolutionary adaptation of molar form. A dietary classification based upon percentages of foods eaten does not always reflect morphological adaptations. Homologous parts of teeth and homologous parts of the masticatory cycle do not always subserve equivalent functions. The relevance of functional occlusal analysis for deciphering phylogeny and explaining evolutionary grades is stressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.