The suppressor of cytokine signaling (SOCS) family of intracellular checkpoint inhibitors has received little recognition compared to other checkpoint inhibitors. Two members of this family, SOCS1 and SOCS3, are indispensable, since SOCS1 knockout in mice results in neonatal death due to interferon gamma (IFNg) induced inflammatory disease, and SOCS3 knockout leads to embryonic lethality. We have shown that SOCS1 and SOCS3 (SOCS1/3) function as virus induced intrinsic virulence factors for influenza A virus, EMC virus, herpes simplex virus 1 (HSV-1), and vaccinia virus infections. Other viruses such as pathogenic pig enteric coronavirus and coronavirus induced severe acute respiratory syndrome (SARS) spike protein also induce SOCS virus intrinsic virulence factors. SOCS1/3 exert their viral virulence effect via inhibition of type I and type II interferon (IFN) function. Specifically, the SOCS bind to the activation loop of receptor-associated tyrosine kinases JAK2 and TYK2 through the SOCS kinase inhibitory region (KIR), which inhibits STAT transcription factor activation by the kinases. Activated STATs are required for IFN function. We have developed a small peptide antagonist of SOCS1/3 that blocks SOCS1/3 inhibitory activity and prevents virus pathogenesis. The antagonist, pJAK2 (1001-1013), is comprised of the JAK2 activation loop, phosphorylated at tyrosine 1007 with a palmitate for cell penetration. The remarkable thing about SOCS1/3 is that it serves as a broad, simple tool of perhaps most pathogenic viruses to avoid innate host IFN defense. We suggest in this Perspective that SOCS1/3 antagonist is a simple counter measure to SOCS1/3 and should be an effective mechanism as a prophylactic and/or therapeutic against the COVID-19 pandemic that is caused by coronavirus SARS-CoV2.
We investigated the in vitro antifungal activity of amphotericin B, alone and in combination with rifabutin, an inhibitor of bacterial RNA polymerase, against 26 clinical isolates of Aspergillus and 25 clinical isolates of Fusarium. Synergy or additivism between these drugs was demonstrated against all isolates tested. Amphotericin B MICs were reduced upon combination with rifabutin from a mean of 0.65 μg/ml to a mean of 0.16 μg/ml againstAspergillus, and from a mean of 0.97 μg/ml to a mean of 0.39 μg/ml against Fusarium (P < 0.000001 for both). Similarly, the MICs of rifabutin were reduced upon combination with amphotericin B from a mean of >32 μg/ml to a mean of 1.1 μg/ml against both fungi (P < 0.000001 for both). These positive interactions were corroborated by a colony count study with two Fusarium isolates, for which treatment with the combination of subinhibitory concentrations of amphotericin B (at concentrations 2- and 4-fold less than the MIC) and rifabutin (at concentrations ranging from 4- to 64-fold less than the MIC) resulted in 3.2-log reductions in colony counts compared to those after treatment with either drug alone. Inhibition of RNA synthesis was shown to be the mechanism of antifungal activity. These results suggest that inhibition of fungal RNA synthesis might be a potential target for antifungal therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.