A precise prediction of the health status of industrial equipment is of significant importance to determine its reliability and lifespan. This prediction provides users information that is useful in determining when to service, repair, or replace the unhealthy equipment’s components. In the last decades, many works have been conducted on data-driven prognostic models to estimate the asset’s remaining useful life. These models require updates on the novel happenings from regular diagnostics, otherwise, failure may happen before the estimated time due to different facts that may oblige rapid maintenance actions, including unexpected replacement. Adding to offline prognostic models, the continuous monitoring and prediction of remaining useful life can prevent failures, increase the useful lifespan through on-time maintenance actions, and reduce the unnecessary preventive maintenance and associated costs. This paper presents the ability of the two real-time tiny predictive analytics models: tiny long short-term memory (TinyLSTM) and sequential dense neural network (DNN). The model (TinyModel) from Edge Impulse is used to predict the remaining useful life of the equipment by considering the status of its different components. The equipment degradation insights were assessed through the real-time data gathered from operating equipment. To label our dataset, fuzzy logic based on the maintainer’s expertise is used to generate maintenance priorities, which are later used to compute the actual remaining useful life. The predictive analytic models were developed and performed well, with an evaluation loss of 0.01 and 0.11, respectively, for the LSTM and model from Edge Impulse. Both models were converted into TinyModels for on-device deployment. Unseen data were used to simulate the deployment of both TinyModels. Conferring to the evaluation and deployment results, both TinyLSTM and TinyModel from Edge Impulse are powerful in real-time predictive maintenance, but the model from Edge Impulse is much easier in terms of development, conversion to Tiny version, and deployment.
The success of all industries relates to attaining the satisfaction to clients with a high level of services and productivity. The success main factor depends on the extent of maintaining their equipment. To date, the Rwandan hospitals that always have a long queue of patients that are waiting for service perform a repair after failure as common maintenance practice that may involve unplanned resources, cost, time, and completely or partially interrupt the remaining hospital activities. Aiming to reduce unplanned equipment downtime and increase their reliability, this paper proposes the Predictive Maintenance (PdM) structure while using Internet of Things (IoT) in order to predict early failure before it happens for mechanical equipment that is used in Rwandan hospitals. Because prediction relies on data, the structure design consists of a simplest developed real time data collector prototype with the purpose of collecting real time data for predictive model construction and equipment health status classification. The real time data in the form of time series have been collected from selected equipment components in King Faisal Hospital and then later used to build a proposed predictive time series model to be employed in proposed structure. The Long Short Term Memory (LSTM) Neural Network model is used to learn data and perform with an accuracy of 90% and 96% to different two selected components.
The application of the Internet of Things (IoT), vehicles to infrastructure (V2I) communication and intelligent roadside units (RSU) are promising paradigms to improve road traffic safety. However, for the RSUs to communicate with the vehicles and transmit the data to the remote location, RSUs require enough power and good network quality. Recent advances in technology have improved lithium-ion battery capabilities. However, other complementary methodologies including battery management systems (BMS) have to be developed to provide an early warning sign of the battery’s state of health. In this paper, we have evaluated the impact of the received signal strength indication (RSSI) and the current consumption at different transmission frequencies on a static battery-based RSU that depends on the global system for mobile communications (GSM)/general packet radio services (GPRS). Machine learning (ML) models, for instance, Random Forest (RF) and Support Vector Machine (SVM), were employed and tested on the collected data and later compared using the coefficient of determination (R2). The models were used to predict the battery current consumption based on the RSSI of the location where the RSUs were imposed and the frequency at which the RSU transmits the data to the remote database. The RF was preferable to SVM for predicting current consumption with an R2 of 98% and 94%, respectively. It is essential to accurately forecast the battery health of RSUs to assess their dependability and running time. The primary duty of the BMS is to estimate the status of the battery and its dynamic operating limits. However, achieving an accurate and robust battery state of charge remains a significant challenge. Referring to that can help road managers make alternative decisions, such as replacing the battery before the RSU power source gets drained. The proposed method can be deployed in other remote WSN and IoT-based applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.