In this study, we demonstrate that the CXC family of chemokines displays disparate angiogenic activity depending upon the presence or absence of the ELR motif. CXC chemokines containing the ELR motif (ELR-CXC chemokines) were found to be potent angiogenic factors, inducing both in vitro endothelial chemotaxis and in vivo corneal neovascularization. In contrast, the CXC chemokines lacking the ELR motif, platelet factor 4, interferon ␥-inducible protein 10, and monokine induced by ␥-interferon, not only failed to induce significant in vitro endothelial cell chemotaxis or in vivo corneal neovacularization but were found to be potent angiostatic factors in the presence of either ELR-CXC chemokines or the unrelated angiogenic factor, basic fibroblast growth factor. Additionally, mutant interleukin-8 proteins lacking the ELR motif demonstrated potent angiostatic effects in the presence of either ELR-CXC chemokines or basic fibroblast growth factor. In contrast, a mutant of monokine induced by ␥-interferon containing the ELR motif was found to induce in vivo angiogenic activity. These findings suggest a functional role of the ELR motif in determining the angiogenic or angiostatic potential of CXC chemokines, supporting the hypothesis that the net biological balance between angiogenic and angiostatic CXC chemokines may play an important role in regulating overall angiogenesis.Angiogenesis, characterized by the neoformation of blood vessels, is an essential biological event encountered in a number of physiological and pathological processes, such as embryonic development, the formation of inflammatory granulation tissue during wound healing, chronic inflammation, and the growth of malignant solid tumors (1-5). Neovascularization can be rapidly induced in response to diverse pathophysiologic stimuli. Under conditions of homeostasis, the rate of capillary endothelial cell turn-over is typically measured in months or years (6, 7). However, the process of angiogenesis during normal wound repair is rapid, transient, and tightly controlled. During neovascularization, normally quiescent endothelial cells are stimulated, degrade their basement membrane and proximal extracellular matrix, migrate directionally, divide, and organize into new functioning capillaries invested by a basal lamina (1-5). The abrupt termination of angiogenesis that accompanies the resolution of the wound repair suggests two possible mechanisms of control: a marked reduction in angiogenic mediators coupled with a simultaneous increase in the level of angiostatic factors that inhibit new vessel growth (8). In contrast to neovascularization of normal wound repair, tumorigenesis is associated with exaggerated angiogenesis, suggesting the existence of augmented angiogenic and reduced levels of angiostatic mediators (3, 9). Although most investigations studying angiogenesis have focused on the identification and mechanism of action of angiogenic factors, recent evidence suggests that angiostatic factors may play an equally important role in the control of neova...
We have previously shown that members of the ELR+ CXC chemokine family, including IL-8; growth-related oncogenes α, β, and γ; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR+ CXC chemokines has not been determined. Because all ELR+ CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR+ CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR+ CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR+ CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR+ CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR+ CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2−/− mice. We thus conclude that CXCR2 is the receptor responsible for ELR+ CXC chemokine-mediated angiogenesis.
Neutrophils have been implicated in the pathogenesis of the adult respiratory distress syndrome (ARDS). We have measured concentrations of the neutrophil attractant interleukin-8 in blood and bronchoalveolar lavage fluid (BAL) from patients at risk of ARDS. We studied 29 patients from three groups at risk of developing ARDS: multiple trauma (n = 16), perforated bowel (n = 6), and pancreatitis (n = 7). ARDS developed in 7 of these patients. Interleukin-8 in BAL and blood samples taken on initial hospital presentation was measured by a sandwich enzyme-linked immunosorbent assay. The mean BAL interleukin-8 concentration was significantly higher for the patients who subsequently progressed to ARDS than for the non-ARDS group (3.06 [SE 2.64] vs 0.053 [0.010] ng/mL, p = 0.0006). There was no difference between the groups in plasma interleukin-8 (6.23 [2.60] vs 5.12 [2.22] ng/mL, p = 0.31). Immunocytochemistry suggested that the alveolar macrophage is an important source of interleukin-8 at this early stage in ARDS development. This study provides evidence of a relation between the presence of interleukin-8 in early BAL samples and the development of ARDS. The early appearance of interleukin-8 in BAL of patients at risk of ARDS may be an important prognostic indicator for the development of the disorder and reinforces the likely importance of neutrophils and the effects of their accumulation and activation in the pathogenesis of many cases of ARDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.