Productivity of old-growth beech forests in the Mediterranean Basin was measured by average stem basal area increment (BAI) of dominant trees at two mountain sites in the Italian Apennines. Both forests could be ascribed to the old-growth stage, but they differed markedly with regard to elevation (1000 vs. 1725 m a.s.l.), soil parent material (volcanic vs. calcareous), mean tree age (less than 200 years vs. 300 years), and stand structure (secondary old-growth vs. primary old-growth forest). Drought at the two sites was quantified by the self-calibrated Palmer Moisture Anomaly Index (Z-index), and by the self-calibrating Palmer Drought Severity Index (PDSI) for summer (June through August) and the growing season (May through September). Dendroclimatological analyses revealed a moisture limitation of beech BAI at interannual (water availability measured by Z-index) and decadal scales (water availability measured by PDSI). Both BAI and water availability increased from 1950 to 1970, and decreased afterwards. Trees were grouped according to their BAI trends in auxological groups (growth-type chronologies), which confirmed that growth of most trees at both sites declined in recent decades, in agreement with increased drought. Because BAI is not expected to decrease without an external forcing, the patterns we uncovered suggest that long-term drought stress has reduced the productivity of beech forests in the central Apennines, in agreement with similar trends identified in other Mediterranean mountains, but opposite to growth trends reported for many forests in central Europe.
Several research initiatives have been undertaken to map fishing effort at high spatial resolution using the Vessel Monitoring System (VMS). An alternative to the VMS is represented by the Automatic Identification System (AIS), which in the EU became compulsory in May 2014 for all fishing vessels of length above 15 meters. The aim of this paper is to assess the uptake of the AIS in the EU fishing fleet and the feasibility of producing a map of fishing effort with high spatial and temporal resolution at European scale. After analysing a large AIS dataset for the period January-August 2014 and covering most of the EU waters, we show that AIS was adopted by around 75% of EU fishing vessels above 15 meters of length. Using the Swedish fleet as a case study, we developed a method to identify fishing activity based on the analysis of individual vessels’ speed profiles and produce a high resolution map of fishing effort based on AIS data. The method was validated using detailed logbook data and proved to be sufficiently accurate and computationally efficient to identify fishing grounds and effort in the case of trawlers, which represent the largest portion of the EU fishing fleet above 15 meters of length. Issues still to be addressed before extending the exercise to the entire EU fleet are the assessment of coverage levels of the AIS data for all EU waters and the identification of fishing activity in the case of vessels other than trawlers.
GlobAllomeTree is an international platform for tree allometric equations. It is the first worldwide web platform designed to facilitate the access of the tree allometric equation and to facilitate the assessment of the tree biometric characteristics for commercial volume, bio-energy or carbon cycling. The webplatform presents a database containing tree allometric equations, a software called Fantallomatrik, to facilitate the comparison and selection of the equations, and documentation to facilitate the development of new tree allometric models, improve the evaluation of tree and forest resources and improve knowledge on tree allometric equations. In the Fantallometrik software, equations can be selected by country, ecological zones, input parameters, tree species, statistic parameters and outputs. The continuously updated database currently contains over 5000 tree allometric equations classified according to 73 fields. The software Fantallometrik can be also used to compare equations, insert new data and estimate the selected output variables using field inventory. The GlobAllomeTree products are freely available at the URL: http://globallometree.org for a range of users including foresters, project developers, scientist, student and government staff
Abstract• We combined stem volume increment analysis with dendroecological tools to address two unresolved issues concerning oak dieback in Mediterranean areas: early detection of changes in stand growth, and identification of mechanisms for observed growth declines.• We reconstructed productivity of a stored coppice formed by Turkey oak (Quercus cerris) to test if its growth decline was linked to climatic variability, while also accounting for age-related and sociological factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.