Nowadays, the solution of multiobjective optimization problems in aeronautical and aerospace engineering has become a standard practice. These two fields offer highly complex search spaces with different sources of difficulty, which are amenable to the use of alternative search techniques such as metaheuristics, since they require little domain information to operate. From the several metaheuristics available, multiobjective evolutionary algorithms (MOEAs) have become particularly popular, mainly because of their availability, ease of use, and flexibility. This paper presents a taxonomy and a comprehensive review of applications of MOEAs in aeronautical and aerospace design problems. The review includes both the characteristics of the specific MOEA adopted in each case, as well as the features of the problems being solved with them. The advantages and disadvantages of each type of approach are also briefly addressed. We also provide a set of general guidelines for using and designing MOEAs for aeronautical and aerospace engineering problems. In the final part of the paper, we provide some potential paths for future research, which we consider promising within this area.
In this paper, we present a surrogate-based multiobjective evolutionary optimization approach to optimize airfoil aerodynamic designs. Our approach makes use of multiple surrogate models which operate in parallel with the aim of combining their features when solving a costly multi-objective optimization problem. The proposed approach is used to solve five multiobjective airfoil aerodynamic optimization problems. We compare the performance of a multi-objective evolutionary algorithm with surrogates with respect to the same approach without using surrogates. Our preliminary results indicate that our proposal can achieve a substantial reduction in the number of objective function evaluations, which has obvious advantages for dealing with expensive objective functions such as those involved in aeronautical optimization problems.
Hybrid Unmanned Aerial Vehicles (H-UAVs) are currently a very interesting field of research in the modern scientific community due to their ability to perform Vertical Take-Off and Landing (VTOL) and Conventional Take-Off and Landing (CTOL). This paper focuses on the Dual Tilt-wing UAV, a vehicle capable of performing both flight modes (VTOL and CTOL). The UAV complete dynamic model is obtained using the Newton–Euler formulation, which includes aerodynamic effects, as the drag and lift forces of the wings, which are a function of airstream generated by the rotors, the cruise speed, tilt-wing angle and angle of attack. The airstream velocity generated by the rotors is studied in a test bench. The projected area on the UAV wing that is affected by the airstream generated by the rotors is specified and 3D aerodynamic analysis is performed for this region. In addition, aerodynamic coefficients of the UAV in VTOL mode are calculated by using Computational Fluid Dynamics method (CFD) and are embedded into the nonlinear dynamic model. To validate the complete dynamic model, PD controllers are adopted for altitude and attitude control of the vehicle in VTOL mode, the controllers are simulated and implemented in the vehicle for indoor and outdoor flight experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.