Purpose: We previously showed that nuclear localization of the actin-binding protein, filamin A (FlnA), corresponded to hormone-dependence in prostate cancer. Intact FlnA (280 kDa, cytoplasmic) cleaved to a 90 kDa fragment which translocated to the nucleus in hormone-naI« ve cells, whereas in hormone-refractory cells, FlnA was phosphorylated, preventing its cleavage and nuclear translocation. We have examined whether FlnA localization determines a propensity to metastasis in advanced androgen-independent prostate cancer. Experimental Design: We examined, by immunohistochemistry, FlnA localization in paraffinembedded human prostate tissue representing different stages of progression. Results were correlated with in vitro studies in a cell model of prostate cancer. Results: Nuclear FlnA was significantly higher in benign prostate (0.6612 F 0.5888), prostatic intraepithelial neoplasia (PIN; 0.6024 F 0.4620), and clinically localized cancers (0.69134 F 0.5686) compared with metastatic prostate cancers (0.3719 F 0.4992, P = 0.0007). Cytoplasmic FlnA increased from benign prostate (0.0833 F 0.2677), PIN (0.1409 F 0.2293), localized cancers (0.3008 F 0.3762, P = 0.0150), to metastases (0.7632 F 0.4414, P < 0.00001). Logistic regression of metastatic versus nonmetastatic tissue yielded the area under the receiver operating curve as 0.67 for nuclear-FlnA, 0.79 for cytoplasmic-FlnA, and 0.82 for both, indicating that metastasis correlates with cytoplasmic to nuclear translocation. In vitro studies showed that cytoplasmic localization of FlnA induced cell invasion whereas nuclear translocation of the protein inhibited it. FlnA dephosphorylation with the protein kinaseA inhibitor H-89 facilitated FlnA nuclear translocation, resulting in decreased invasiveness and AR transcriptional activity, and induced sensitivity to androgen withdrawal in hormone-refractory cells. Conclusions:The data presented in this study indicate that in prostate cancer, metastasis correlates with cytoplasmic localization of FlnA and may be prevented by cleavage and subsequent nuclear translocation of this protein.Filamins are a family of cytoskeletal proteins that organize filamentous actin into networks and stress fibers (1). Filamin A (FlnA) is a 280 kDa non -muscle actin binding protein, the appropriate function of which is essential for development (2, 3). FlnA dimerization forms a V-shaped flexible structure which can induce high-angle orthogonal branching and efficiently gather actin filaments into a three-dimensional gel in vitro by cross-linking actin filaments at the leading edge of migrating cells. Hence, filamins are essential for mammalian cell locomotion, anchoring of transmembrane proteins including integrins, and also act as interfaces for protein-protein interaction (4). More than 30 proteins of great functional diversity are known to interact with filamins which function as a signaling scaffold by connecting and coordinating a large variety of cellular processes (4).In prostate cancer, a role for FlnA was identified in prost...
Patients with advanced prostate cancer (PCa) are initially susceptible to androgen withdrawal (AW), but ultimately develop resistance to this therapy (castration-resistant PCa, CRPC). Here, we show that AW can promote CRPC development by increasing the levels of the receptor tyrosine kinase ErbB3 in androgendependent PCa, resulting in AW-resistant cell cycle progression and increased androgen receptor (AR) transcriptional activity. CRPC cell lines and human PCa tissue overexpressed ErbB3, whereas downregulation of ErbB3 prevented CRPC cell growth. Investigation of the mechanism by which AW augments ErbB3, using normal prostate-derived pRNS-1-1 cells, and androgen-dependent PCa lines LNCaP, PC346C, and CWR22 mouse xenografts, revealed that the AR suppresses ErbB3 protein levels, whereas AW relieves this suppression, showing for the first time the negative regulation of ErbB3 by AR. We show that AR activation promotes ErbB3 degradation in androgen-dependent cells, and that this effect is mediated by AR-dependent transcriptional upregulation of neuregulin receptor degradation protein-1 (Nrdp1), an E3 ubiquitin ligase that targets ErbB3 for degradation but whose role in PCa has not been previously examined. Therefore, AW decreases Nrdp1 expression, promoting ErbB3 protein accumulation, and leading to AR-independent proliferation. However, in CRPC sublines of LNCaP and CWR22, which strongly overexpress the AR, ErbB3 levels remain elevated due to constitutive suppression of Nrdp1, which prevents AR regulation of Nrdp1. Our observations point to a model of CRPC development in which progression of PCa to castration resistance is associated with the inability of AR to transcriptionally regulate Nrdp1, and predict that inhibition of ErbB3 during AW may impair CRPC development. Cancer Res; 70(14); 5994-6003. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.