Colorectal cancers (CRCs) often show a dense infiltrate of cytokine-producing immune/inflammatory cells. The exact contribution of each immune cell subset and cytokine in the activation of the intracellular pathways sustaining CRC cell growth is not understood. Herein, we isolate tumor-infiltrating leukocytes (TILs) and lamina propria mononuclear cells (LPMCs) from the tumor area and the macroscopically unaffected, adjacent, colonic mucosa of patients who underwent resection for sporadic CRC and show that the culture supernatants of TILs, but not of LPMCs, potently enhance the growth of human CRC cell lines through the activation of the oncogenic transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-kB). Characterization of immune cell complexity of TILs and LPMCs reveals no differences in the percentages of T cells, natural killer T cells, natural killer (NK) cells, macrophages and B cells. However, T cells from TILs show a functional switch compared with those from LPMCs to produce large amounts of T helper type 17 (Th17)-related cytokines (that is, interleukin-17A (IL-17A), IL-17F, IL-21 and IL-22), tumor necrosis factor-α (TNF-α) and IL-6. Individual neutralization of IL-17A, IL-17F, IL-21, IL-22, TNF-α or IL-6 does not change TIL-derived supernatant-driven STAT3 and NF-kB activation, as well as their proproliferative effect in CRC cells. In contrast, simultaneous neutralization of both IL-17A and TNF-α, which abrogates NF-kB signaling, and IL-22 and IL-6, which abrogates STAT3 signaling, reduces the mitogenic effect of supernatants in CRC cells. IL-17A, IL-21, IL-22, TNF-α and IL-6 are also produced in excess in the early colonic lesions in a mouse model of sporadic CRC, associated with enhanced STAT3/NF-kB activation. Mice therapeutically given BP-1-102, an orally bioavailable compound targeting STAT3/NF-kB activation and cross-talk, exhibit reduced colon tumorigenesis and diminished expression of STAT3/NF-kB-activating cytokines in the neoplastic areas. These data suggest that strategies aimed at the cotargeting of STAT3/NF-kB activation and interaction between them might represent an attractive and novel approach to combat CRC.
Background & AimsFood additives, such as emulsifiers, stabilizers, or bulking agents, are present in the Western diet and their consumption is increasing. However, little is known about their potential effects on intestinal homeostasis. In this study we examined the effect of some of these food additives on gut inflammation.MethodsMice were given drinking water containing maltodextrin (MDX), propylene glycol, or animal gelatin, and then challenged with dextran sulfate sodium or indomethacin. In parallel, mice fed a MDX-enriched diet were given the endoplasmic reticulum (ER) stress inhibitor tauroursodeoxycholic acid (TUDCA). Transcriptomic analysis, real-time polymerase chain reaction, mucin-2 expression, phosphorylated p38 mitogen-activated protein (MAP) kinase quantification, and H&E staining was performed on colonic tissues. Mucosa-associated microbiota composition was characterized by 16S ribosomal RNA sequencing. For the in vitro experiments, murine intestinal crypts and the human mucus-secreting HT29-methotrexate treated cell line were stimulated with MDX in the presence or absence of TUDCA or a p38 MAP kinase inhibitor.ResultsDiets enriched in MDX, but not propylene glycol or animal gelatin, exacerbated intestinal inflammation in both models. Analysis of the mechanisms underlying the detrimental effect of MDX showed up-regulation of inositol requiring protein 1β, a sensor of ER stress, in goblet cells, and a reduction of mucin-2 expression with no significant change in mucosa-associated microbiota. Stimulation of murine intestinal crypts and HT29-methotrexate treated cell line cells with MDX induced inositol requiring protein 1β via a p38 MAP kinase–dependent mechanism. Treatment of mice with TUDCA prevented mucin-2 depletion and attenuated colitis in MDX-fed mice.ConclusionsMDX increases ER stress in gut epithelial cells with the downstream effect of reducing mucus production and enhancing colitis susceptibility.
Interleukin-34 (IL-34), a cytokine produced by a wide range of cells, binds to the macrophage colony-stimulating factor receptor (M-CSFR-1) and receptor-type protein-tyrosine phosphatase zeta (PTP-z) and controls myeloid cell differentiation, proliferation and survival. various types of cancers over-express IL-34 but the role of the cytokine in colorectal cancer (CRC) remains unknown. We here investigated the expression and functional role of IL-34 in CRC. A more pronounced expression of IL-34 was seen in CRC samples as compared to matched normal/benign colonic samples and this occurred at both RNA and protein level. Immunohistochemical analysis of CRC tissue samples showed that both cancer cells and lamina propria mononuclear cells over-expressed IL-34. Additionally, CRC cells expressed both M-CSFR-1 and PTP-z, thus suggesting that CRC cells can be responsive to IL-34. Indeed, stimulation of DLD-1 cancer cells with IL-34, but not with MSCF1, enhanced the cell proliferation and cell invasion without affecting cell survival. Analysis of intracellular signals underlying the mitogenic effect of IL-34 revealed that the cytokine enhanced activation of ERK1/2 and pharmacologic inhibition of ERK1/2 abrogated IL-34-driven cell proliferation. Consistently, IL-34 knockdown in HT-29 cells with a specific IL-34 antisense oligonucleotide reduced ERK1/2 activation, cell proliferation and enhanced the susceptibility of cells to Oxaliplatin-induced death. This is the first study showing up-regulation of IL-34 in CRC and suggesting a role for this cytokine in colon tumorigenesis.
In inflammatory bowel disease (IBD), tissue damage is driven by an excessive immune response, poorly controlled by counter-regulatory mechanisms. SIRT1, a class III NAD+-dependent deacetylase, regulates negatively the expression of various proteins involved in the control of immune-inflammatory pathways, such as Stat3, Smad7, and NF-κB. Here we examined the expression, regulation, and function of SIRT1 in IBD. SIRT1 RNA and protein expression was less pronounced in whole biopsies and lamina propria mononuclear cells (LPMCs) of IBD patients in comparison with normal controls. SIRT1 expression was downregulated in control LPMC by tumor necrosis factor (TNF)-α and interleukin (IL)-21, and upregulated in IBD LPMC by neutralizing TNF-α and IL-21antibodies. Consistently, SIRT1 expression was increased in mucosal samples taken from IBD patients successfully treated with Infliximab. Treatment of IBD LPMC with Cay10591, a specific SIRT1 activator, reduced NF-κB activation and inhibited inflammatory cytokine synthesis, whereas Ex527, an inhibitor of SIRT1, increased interferon (IFN)-γ in control LPMC. SIRT1 was also reduced in mice with colitis induced by 2,4,6-trinitrobenzenesulphonic acid or oxazolone. Cay10591 prevented and cured experimental colitis whereas Ex527 exacerbated disease by modulating T cell-derived cytokine response. Data indicate that SIRT1 is downregulated in IBD patients and colitic mice and suggest that SIRT1 activation can help attenuate inflammatory signals in the gut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.