Colorectal cancers (CRCs) often show a dense infiltrate of cytokine-producing immune/inflammatory cells. The exact contribution of each immune cell subset and cytokine in the activation of the intracellular pathways sustaining CRC cell growth is not understood. Herein, we isolate tumor-infiltrating leukocytes (TILs) and lamina propria mononuclear cells (LPMCs) from the tumor area and the macroscopically unaffected, adjacent, colonic mucosa of patients who underwent resection for sporadic CRC and show that the culture supernatants of TILs, but not of LPMCs, potently enhance the growth of human CRC cell lines through the activation of the oncogenic transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-kB). Characterization of immune cell complexity of TILs and LPMCs reveals no differences in the percentages of T cells, natural killer T cells, natural killer (NK) cells, macrophages and B cells. However, T cells from TILs show a functional switch compared with those from LPMCs to produce large amounts of T helper type 17 (Th17)-related cytokines (that is, interleukin-17A (IL-17A), IL-17F, IL-21 and IL-22), tumor necrosis factor-α (TNF-α) and IL-6. Individual neutralization of IL-17A, IL-17F, IL-21, IL-22, TNF-α or IL-6 does not change TIL-derived supernatant-driven STAT3 and NF-kB activation, as well as their proproliferative effect in CRC cells. In contrast, simultaneous neutralization of both IL-17A and TNF-α, which abrogates NF-kB signaling, and IL-22 and IL-6, which abrogates STAT3 signaling, reduces the mitogenic effect of supernatants in CRC cells. IL-17A, IL-21, IL-22, TNF-α and IL-6 are also produced in excess in the early colonic lesions in a mouse model of sporadic CRC, associated with enhanced STAT3/NF-kB activation. Mice therapeutically given BP-1-102, an orally bioavailable compound targeting STAT3/NF-kB activation and cross-talk, exhibit reduced colon tumorigenesis and diminished expression of STAT3/NF-kB-activating cytokines in the neoplastic areas. These data suggest that strategies aimed at the cotargeting of STAT3/NF-kB activation and interaction between them might represent an attractive and novel approach to combat CRC.
Background and Aims: In ulcerative colitis [UC], mucosal damage occurs in areas that are infiltrated with neutrophils. The antimicrobial function of neutrophils relies in part on the formation of extracellular web-like structures, named neutrophil extracellular traps [NETs]. The formation and/or clearance of aberrant NETs have been associated with several immune diseases. Here we investigated the role of NETs in UC-related inflammation. Methods: The expression of NET-associated proteins was evaluated in colonic biopsies of patients with Crohn's disease [CD], UC and in normal controls [NC] by Western blotting, immunofluorescence and immunohistochemistry. Colonic biopsies of UC patients were analysed before and after antitumour necrosis factor α [anti-TNF-α] treatment. The capacity of neutrophils to produce NETs upon activation was tested in vitro. UC lamina propria mononuclear cells [LPMCs] were cultured with NETs in the presence or absence of an extracellular signal-regulated kinase-1/2 [ERK1/2] inhibitor and inflammatory cytokine induction was assessed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We also characterized the contribution of NETs in dextran sodium sulfate [DSS]-induced colitis. Results: NET-associated proteins were over-expressed in inflamed colon of UC patients as compared to CD patients and NC. Circulating neutrophils of UC patients produced NETs in response to TNF-α stimulation, and reduced expression of NET-related proteins and diminished NET formation were seen in patients receiving successful treatment with anti-TNF-α. Treatment of UC LPMCs with NETs activated ERK1/2, thus enhancing TNF-α and interleukin-1β [IL-1β] production. NETs were induced in mice with DSS-colitis and in vivo inhibition of NET release attenuated colitis. Conclusions: Our data show that NET release occurs in UC and suggest a role for NETs in sustaining mucosal inflammation in this disorder.
IL-21 expression is increased in the gut of patients with colitis-associated colon cancer, and genetic ablation or antibody neutralization of IL-21 reduces tumor size and inflammation in mice treated with dextran sulfate sodium and azoxymethane.
Celiac disease (CD) is a gluten-sensitive enteropathy associated with a marked infiltration of the mucosa with IFN-γ–secreting Th1 cells. Recent studies have shown that a novel subset of T cells characterized by expression of high levels of IL-17A, termed Th17 cells, may be responsible for pathogenic effects previously attributed to Th1 cells. In this study, we characterized the expression of IL-17A–producing cells in CD. By real-time PCR and ELISA, it was shown that expression of IL-17A RNA and protein is more pronounced in active CD biopsy specimens in comparison with inactive CD and normal mucosal biopsy specimens. Flow cytometry confirmed that IL-17A is overproduced in CD mucosa and that CD4+ and CD4+CD8+ cells were major sources. The majority of IL-17A–producing CD4+ and CD4+CD8+ cells coexpressed IFN-γ but not CD161. The addition of a peptic‑tryptic digest of gliadin to ex vivo organ cultures of duodenal biopsy specimens taken from inactive CD patients enhanced IL-17A production by both CD4+ and CD4+CD8+ cells. Because we previously showed that IL-21, a T cell-derived cytokine involved in the control of Th17 cell responses, is overproduced in CD, we next assessed whether IL-17A expression is regulated by IL-21. Blockade of IL-21 activity by a neutralizing IL-21 Ab reduced IL-17A expression in cultures of active CD and peptic–tryptic digest of gliadin-treated CD biopsy specimens. In conclusion, our data show that IL-17A is increased in CD and is produced by cells that also make IFN-γ.
Interleukin-34 (IL-34), a cytokine produced by a wide range of cells, binds to the macrophage colony-stimulating factor receptor (M-CSFR-1) and receptor-type protein-tyrosine phosphatase zeta (PTP-z) and controls myeloid cell differentiation, proliferation and survival. various types of cancers over-express IL-34 but the role of the cytokine in colorectal cancer (CRC) remains unknown. We here investigated the expression and functional role of IL-34 in CRC. A more pronounced expression of IL-34 was seen in CRC samples as compared to matched normal/benign colonic samples and this occurred at both RNA and protein level. Immunohistochemical analysis of CRC tissue samples showed that both cancer cells and lamina propria mononuclear cells over-expressed IL-34. Additionally, CRC cells expressed both M-CSFR-1 and PTP-z, thus suggesting that CRC cells can be responsive to IL-34. Indeed, stimulation of DLD-1 cancer cells with IL-34, but not with MSCF1, enhanced the cell proliferation and cell invasion without affecting cell survival. Analysis of intracellular signals underlying the mitogenic effect of IL-34 revealed that the cytokine enhanced activation of ERK1/2 and pharmacologic inhibition of ERK1/2 abrogated IL-34-driven cell proliferation. Consistently, IL-34 knockdown in HT-29 cells with a specific IL-34 antisense oligonucleotide reduced ERK1/2 activation, cell proliferation and enhanced the susceptibility of cells to Oxaliplatin-induced death. This is the first study showing up-regulation of IL-34 in CRC and suggesting a role for this cytokine in colon tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.