In the recent years it has been increasingly recognized that pharmacogenetical factors play an important role in the drug treatment. These factors may influence the appearance of side-effects and drug interactions due to interindividual differences in the activity of metabolizing enzymes. Risperidone in humans is mainly metabolized to 9-hydroxyrisperidone by the polymorphic cytochrome enzyme P450 2D6 (CYP2D6). Plasma concentrations of risperidone and 9-hydroxyrisperidone show large interindividual variability, which may be partly related to the activity of the CYP2D6 enzyme. Around seven percent of Caucasians have a genetically inherited impaired activity of the CYP2D6 enzyme. Debrisoquine metabolic ratio (a marker of CYP2D6 activity) and the number of CYP2D6 active genes have been related to risperidone plasma concentrations among patients during steady-state conditions. A large number drugs have been described to be metabolized by CYP2D6, and it is therefore important to evaluate the clinical significance of the impaired metabolism and possible drug interactions on the enzyme. Since risperidone/9-hydroxyrisperidone ratio strongly correlates with CYP2D6 enzyme activity and the number of CYP2D6 active genes, thus it might be a useful tool in clinical practice to estimate the possible risk of drug interactions due to impaired CYP2D6 enzyme activity. CYP3A4 is the most abundant drug metabolizing enzyme in humans, and in vitro and in vivo results suggest also a role for the enzyme in risperidone metabolism. The consideration of the implication of cytochrome P450 enzymes in risperidone metabolism may help to individualize dose schemes in order to avoid interactions and potentially dangerous side-effects, such us QTc interval lengthening among patients with cardiac risk factors.
The results show that the plasma concentrations of thioridazine and its metabolites are influenced by tobacco smoking and the CYP2D6 genotype, and support the dose-dependent inhibition of CYP2D6 by thioridazine. CYP2C9 does not play an important role in thioridazine metabolism.
The role of certain drug metabolizing enzymes in cardiotoxicity, such as CYP2D6 for thioridazine, has been suggested. Risperidone has been shown to inhibit the delayed rectifier leading to lengthening of cardiac repolarization. The heart-rate corrected QT (QTc) interval lengthening has been reported in psychiatric patients receiving risperidone under steady-state conditions. CYP2D6 is involved in the metabolism of risperidone to 9-hydroxy (OH)-risperidone. CYP2C9 enzyme is also involved in the metabolism of several psychotropic drugs, although there are no data about its implication in risperidone metabolism. The present study aimed to evaluate the influence of CYP2D6 and CYP2C9 genotypes, and plasma concentrations of risperidone and 9-OH-risperidone on the QTc interval in patients under steady-state conditions. The relevance of CYP2D6 and CYP2C9 genotypes on risperidone metabolism was also analysed. Thirty-five White European psychiatric patients receiving risperidone monotherapy were studied. QTc interval was longer (p < 0.05) in subjects with one active CYP2D6 gene compared to those with two. The number of CYP2D6 active genes was related to the dose-corrected plasma concentration of risperidone (p < 0.05), the active moiety (risperidone plus 9-OH-risperidone) (p < 0.05) and the risperidone/9-OH-risperidone ratio (p < 0.05). CYP2C9 genotypes were not related to plasma concentrations of risperidone or 9-OH-risperidone, nor QTc interval. The results suggest that CYP2D6, but not CYP2C9, may be related to QTc lengthening during treatment with risperidone. The effect of the CYP2D6 genotype in risperidone metabolism is also shown.
Sixteen hospitalized white European Spanish psychiatric patients treated with thioridazine alone were studied with respect to CYP2D6 genotype, debrisoquine metabolic ratio (MR), and the plasma levels of thioridazine and its metabolites mesoridazine and sulforidazine. After decreasing the dose of thioridazine the debrisoquine MR and thioridazine plasma levels were redetermined. At the initial determination (regular clinical doses, 20-300 mg/day), 14 of 16 patients (88%) were classified as poor metabolizers of debrisoquine (PMs). However, after complete withdrawal of thioridazine in 10 patients, all 10 became extensive metabolizers except two who were genotypically PMs (*4/*4). The inhibition of debrisoquine metabolism was genotype dependent. All patients with wt/wt genotype treated with a dose 150 mg/d were phenotypically PMs, all patients with wt/*4 genotype treated with a dose of 50 mg/d or greater were PMs. The debrisoquine MR from all dose changes correlated with the dose (p < 0.001) and plasma level (p < 0.001) of thioridazine. The CYP2D6 hydroxylation capacity was inhibited by thioridazine as determined by the debrisoquine MR. This inhibition was reversible by thioridazine withdrawal, and thus seems to be dose dependent and related to CYP2D6 genotype. One must consider the effects of thioridazine dosage on CYP2D6, because it may influence the metabolism of concomitant drugs or produce clinically important adverse effects such as cardiotoxicity. An awareness of this problem and cautious dosage adjustment of other drugs metabolized by the same enzyme are recommended during treatment with thioridazine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.