Globally, over 80% of fisheries are at maximum sustainable levels or overexploited. However, small-scale fisheries (SSFs) in developing countries play a relevant role in coastal communities’ development with important impacts on the economy. The SSFs are normally multi-specific and due to the lack of data, studying them by simulation poses an important challenge especially forecasting models. These models are necessary to support management decisions or develop sustainable fisheries; therefore, models based on Deep Learning were proposed to forecast SSFs catch, using data from official catch landing reports (OCLRs), satellite images, and oceanographic data. The finfish fishery in Bahía Magdalena-Almejas (México) was used for the present study. According to an analysis of OCLRs, the target species of major importance in the fishery were identified and selected for the model. The proposed deep learning models used two artificial neural networks structures: non-linear autoregressive neural network and long-short term memory network, which were designed to assess and forecast monthly catch levels of Paralabrax nebulifer and Caulolatilus princeps. Models with a performance efficiency of R > 0.8, MSE < 300 were found, which indicate that the models are applicable in SSF with poor data and multi-specific fishery contexts, at low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.