Complexity involved in the transport of soils and the restrictive legislation for the area makes on‐site bioremediation the strategy of choice to reduce hydrocarbons contamination in Antarctica. The effect of biostimulation (with N and P) and bioaugmentation (with two bacterial consortia and a mix of bacterial strains) was analysed by using microcosms set up on metal trays containing 2·5 kg of contaminated soil from Marambio Station. At the end of the assay (45 days), all biostimulated systems showed significant increases in total heterotrophic aerobic and hydrocarbon‐degrading bacterial counts. However, no differences were detected between bioaugmented and nonbioaugmented systems, except for J13 system which seemed to exert a negative effect on the natural bacterial flora. Hydrocarbons removal efficiencies agreed with changes in bacterial counts reaching 86 and 81% in M10 (bioaugmented) and CC (biostimulated only) systems. Results confirmed the feasibility of the application of bioremediation strategies to reduce hydrocarbon contamination in Antarctic soils and showed that, when soils are chronically contaminated, biostimulation is the best option. Bioaugmentation with hydrocarbon‐degrading bacteria at numbers comparable to the total heterotrophic aerobic counts showed by the natural microflora did not improve the process and showed that they would turn the procedure unnecessarily more complex.
Several studies have shown that biostimulation can promote hydrocarbon bioremediation processes in Antarctic soils. However, the effect of the different nutrient sources on hydrocarbon removal heavily depends on the nutrients used and the soil characteristics. In this work, using a sample of chronically contaminated Antarctic soil that was exposed to a fresh hydrocarbon contamination, we analyzed how a complex organic nutrient source such as fish meal (FM) and a commercial fertilizer (OSEII) can affect hydrocarbon biodegradation and bacterial community composition. Both amended and unamended (control) biopiles were constructed and controlled at Carlini Station and sampled at days 0, 5, 16, 30 and 50 for microbiological, chemical and molecular analyses. FM caused a fast increase in both total heterotrophic and hydrocarbon degrading bacterial counts. These high values were maintained until the end of the assay, when statistically significant total hydrocarbon removal (71 %) was detected when compared with a control system. The FM biopile evidenced the dominance of members of the phylum Proteobacteria and a clear shift in bacterial structure at the final stage of the assay, when an increase of Actinobacteria was observed. The biopile containing the commercial fertilizer evidenced a hydrocarbon removal activity that was not statistically significant when compared with the untreated system and exhibited a bacterial community that differed from those observed in the unamended and FM-amended biopiles. In summary, biostimulation using FM in biopiles significantly enhanced the natural hydrocarbon-degradation activity of the Carlini station soils in biopile systems and caused significant changes in the bacterial community structure. The results will be considered for the future design of soil bioremediation protocols for Carlini Station and could also be taken into account to deal with dieselcontaminated soils from other cold-climate areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.