Integrated pest management (IPM) seeks to minimize the environmental impact of pesticide application, and reduce risks to human and animal health. IPM is based on two important aspects – prevention and monitoring of diseases and insect pests – which today are being assisted by sensing and artificial-intelligence (AI) techniques. In this paper, we surveyed the detection and diagnosis, with AI, of diseases and insect pests, in cotton, which have been published between 2014 and 2021. This research is a systematic literature review. The results show that AI techniques were employed – mainly – in the context of (i) classification, (ii) image segmentation and (iii) feature extraction. The most used algorithms, in classification, were support vector machines, fuzzy inference, back-propagation neural-networks and recently, convolutional neural networks; in image segmentation, k-means was the most used; and, in feature extraction, histogram of oriented gradients, partial least-square regression, discrete wavelet transform and enhanced particle-swarm optimization were equally used. The most used sensing techniques were cameras, and field sensors such as temperature and humidity sensors. The most investigated insect pest was the whitefly, and the disease was root rot. Finally, this paper presents future works related to the use of AI and sensing techniques, to manage diseases and insect pests, in cotton; for instance, implement diagnostic, predictive and prescriptive models to know when and where the diseases and insect pests will attack and make strategies to control them.
El presente estudio explora las actividades, los proyectos y las líneas de acción de veinticuatro medialabs de instituciones de educación superior elegidos a partir de un sistema no probabilístico. Sobre la muestra se aplica un análisis de contenido cualitativo para mapear las características de los laboratorios. Siguiendo un proceso inductivo de categorización, el estudio identifica como ejes de trabajo destacados iniciativas que materializan los principios de la inteligencia colectiva, impulsan la transformación de los sistemas de enseñanza y aprendizaje, y promueven el uso del lenguaje audiovisual y multimedia dentro y fuera del aula. Los resultados subrayan patrones de enseñanza que estrechan los vínculos de las instituciones con sus entornos sociales. Las iniciativas encontradas muestran de qué manera los medialabs facilitan nuevas formas de alcanzar el conocimiento en áreas tan variadas como el arte, el diseño, el periodismo o la ingeniería a través del uso de la tecnología.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.