Purpose To investigate the effectiveness and safety of combined phacoemulsification and dexamethasone intravitreal implant in patients with cataract and diabetic macular edema. Methods In this two-center, retrospective, single-group study, the charts of 16 consecutive patients who underwent combined phacoemulsification and intravitreal dexamethasone implant were retrospectively reviewed. These 16 patients, 7 men and 9 women, were observed at least 3 months of follow-up. Primary outcome was the change of the central retinal thickness (CRT); secondary outcome was the change of best-corrected visual acuity (BCVA). Any ocular complications were recorded. Results Mean CRT decreased significantly from 486 ± 152.4 μm at baseline to 365.5 ± 91 μm at 30 days (p = .005), to 326 ± 80 μm at 60 days (p = .0004), and to 362 ± 134 μm at 90 days (p = .001). Mean BCVA was 20/105 (logMAR, 0.72 ± 0.34) at baseline and improved significantly (p ≤ .007) at all postsurgery time points. One case of ocular hypertension was observed and successfully managed with topical therapy. No endophthalmitis or other ocular complications were observed. Conclusion Intravitreal slow-release dexamethasone implant combined with cataract surgery may be an effective approach on morphologic and functional outcomes for patients with cataract and diabetic macular edema for at least three months after surgery.
Background 27-gauge (27G) and 25-gauge (25G) transconjunctival sutureless vitrectomy (TSV) were considered equal about safety, effectiveness and vitrectomy time for the treatment of rhegmatogenous retinal detachment (RRD), although larger and long-term comparative studies are needed to confirm previous knowledge. Furthermore, a combined comparison of time duration of surgery and vitreous removal was never performed. Our purpose was to compare the safety and efficacy of 27G versus 25G TSV for the treatment of uncomplicated RRD over a 1-year follow-up. Methods A 12-months single-center prospective, randomized, interventional study of 92 consecutive patients was performed. 46 patients underwent 27G TSV (Group 1) and 46 underwent 25G TSV (Group 2). Primary outcomes were primary and final reattachment rate, and final functional success (visual acuity ≥ 20/200, 1 LogMar). Secondary outcomes were the surgical and vitrectomy time. Complications were recorded. Results All functional and morphologic data at baseline and at all follow-up time points up to 12 months after surgery were available for only 88 patients. Four patients in Group 1 dropped out of the study after surgery. There was no significant difference in baseline characteristics between the two groups. Primary and final reattachment rates were 90.5% and 100% in Group 1, and 95.6% and 100% in Group 2, respectively ( p > .05, p > .05, respectively). Visual acuity improved from 1.5 ± 1.09 LogMar to 0.38 ± 0.55 LogMar in Group 1 ( p < .001) and 1.2 ± 0.9 LogMar to 0.49 ± 0.53 LogMar in Group 2 ( p < .001), without significant difference between the groups ( p > .05). The surgical time was 73.2 ± 11.3 min with 27G TSV and 64.4 ± 9.5 min with 25G TSV ( p = .0001). The vitrectomy time was 19.9 ± 3.8 min with 27G TSV and 20.8 ± 3.8 min with 25G TSV ( p > .05). One single case of choroidal detachment occurred. Conclusions Reattachment rates, functional success and vitrectomy time were comparable between 27G and 25G TSV for RRD. Surgical time was significantly longer using 27G vitrectomy.
Background Inverted Internal Limiting Membrane (ILM)-flap technique would seem to lead to higher closure rate and better visual acuity than traditional procedure with ILM peeling for the treatment of large macular hole (LMH). Visual acuity recovery does not reveal many other functional changes related to surgical approach. Our purpose was to evaluate macular function and morphology over a 1-year follow-up after inverted ILM-flap technique for LMH by using microperimetry in order to predict visual prognosis. Methods This study was a prospective unrandomized single-center study. 23 eyes of 22 patients with idiopathic LMH, with a minimum diameter ranging from 400 to 1000 μm, were included. All patients underwent vitrectomy with inverted ILM-flap technique and gas tamponade. We analyzed macular hole closure rate and functional outcomes including best-corrected visual acuity (BCVA), macular sensitivity (MS) at central 12° and central macular sensitivity (CMS) at central 4°, and fixation behavior as bivariate contour ellipse area (BCEA, degrees2) at 68%, 95%, and 99% of fixation points measured by microperimeter, over a follow-up of 12 months. Results The macular hole closure rate was 98%. The BCVA improved from 20/230 (Logmar, 1.06 ± 0.34) to 20/59 (logMar, 0.47 ± 0.45) at last follow-up (p < 0.001). Retinal sensitivity and BCEA significantly improved (MS, p = 0.001; CMS, p < 0.0001; BCEA: 68%, p < 0.01; 95%, p < 0.01; 99%, p = 0.001). Multiple stepwise regression analysis showed the final BCVA was significantly associated with macular hole size (β = 0.002, p = 0.03), preoperative MS (β = − 0.06, p = 0.001) and BCEA at 95% and 99% of fixation points (β = − 0.12, p = 0.01; β = 0.06, p = 0.01). Conclusions Inverted ILM-flap technique for LMH results in good morphologic and functional outcomes. Macular hole size and microperimetric parameters as preoperative MS and BCEA have a predictive role on post-surgical visual acuity.
Background: Despite the high closure rate of large macular hole (LMH) after surgery, visual recovery is often worse than expected. Microperimetric biofeedback can improve visual function in macular pathologies. We evaluated the efficacy of biofeedback on macular function after successful inverted flap technique for LMH. Methods: In this prospective comparative study, 26 patients after LMH surgical closure were enrolled. The whole sample was equally divided into two groups. In Group 1 (trained), patients underwent a double cycle of microperimetric biofeedback, using structured light stimulus plus acoustic tone; in Group 2 (control), patients underwent scheduled visits. We analyzed visual acuity, retinal sensitivity at central 12° (macular sensitivity, MS) and 4° (central macular sensitivity, CMS), and fixation stability over twelve months. Results: Visual acuity improved mainly in the trained group, without any significant differences between the groups (p > 0.05). Only after training did MS significantly improve (p = 0.01). CMS more significantly improved in the trained (p < 0.001) than the control group (p < 0.01) (Group 1 vs. 2, p = 0.004). Only in the trained group did fixation significantly improve (3 months, p ≤ 0.03; 12 months, p ≤ 0.01). An equality test on matched data confirmed a greater significant improvement of CMS (p ≤ 0.02) at all follow-up and fixation (p ≤ 0.02) at last follow-up after training. Conclusions: Microperimetric biofeedback consolidates and increases the improvement of retinal sensitivity and fixation gained after successful inverted flap technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.