Low-temperature thermal cycling of plasma-sprayed zirconia coatings reveals unique mechanical responses in their curvature measurements, namely nonlinear and cyclic hysteresis, collectively termed as anelastic. These features arise from the inherent layered, porous, and cracked morphology of thermal-sprayed ceramic materials. In this paper, the mechanisms of anelasticity are characterized by crack closure and frictional sliding models, and stress-strain relations of various thermal-sprayed zirconia coatings were determined via an inverse analysis procedure. These results demonstrate process conditions such as powder morphology and spray parameters significantly influence the mechanical behaviors of coatings. The unique anelastic responses can be used as valuable parameters in identifying coating quality as well as process reliability in manufacturing.N. Padure-contributing editor
The concept of Ôprocess mapsÕ has been utilized to study the fundamentals of process-structure-property relationships in high velocity oxygen fuel (HVOF) sprayed coatings. Ni-20%Cr was chosen as a representative material for metallic alloys. In this paper, integrated experiments including diagnostic studies, splat collection, coating deposition, and property characterization were carried out in an effort to investigate the effects of fuel gas chemistry (fuel/oxygen ratio), total gas flow, and energy input on particle states: particle temperature (T) and velocity (V), coating formation dynamics, and properties. Coatings were deposited on an in situ curvature sensor to study residual stress evolution. The results were reconciled within the framework of process maps linking torch parameters with particle states (1st order map) and relating particle state with deposit properties (2nd order map). A strong influence of particle velocity on induced compressive stresses through peening effect is discussed. The complete tracking of the coating buildup history including particle state, residual stress evolution and deposition temperature, in addition to single splat analysis, allows the interpretation of resultant coating microstructures and properties and enables coating design with desired properties.
Over the last decade there has been an explosion in terms of available tools for sensing the particle spray stream in thermal spray processes. This has led to considerable enhancement in our understanding of process reproducibility and reliability. Despite these advances, the linkage to coating properties has continued to be an enigma. This is partially due to the complex nature of the build-up process and the associated issues with measuring properties of these complex coatings. In this paper, we identify critical issues in processing-structure-property relations particularly with respect to the linkage to particle properties. Our goal is to demonstrate an integrated strategy, one that combines particle state sensing, with process mapping and extracting coating properties in situ through the development of robust and advanced curvature-based techniques. These techniques allow estimation of coating modulus, residual stress and, non-linear response of thermal sprayed ceramic coatings all within minutes of the deposition process. Finally, the integrated strategy examines the role of process maps for control of the spray stream as well as tailoring properties of thermal spray coatings. Examples of such studies for yttria-stabilized zirconia thermal barrier coatings are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.