Panorama stitching consists on frames being merged to create a 360° view. This technique is proposed for its implementation in autonomous vehicles instead of the use of an external 360-degree camera, mostly due to its reduced cost and improved aerodynamics. This strategy requires a fast and robust set of features to be extracted from the images obtained by the cameras located around the inside of the car, in order to effectively compute the panoramic view in real time and avoid hazards on the road. This paper compares and creates discussion of three feature extraction methods (i.e. SIFT, BRISK and SURF) for image feature extraction, in order to decide which one is more suitable for a panorama stitching application in an autonomous car architecture. Experimental validation shows that SURF exhibits an improved performance under a variety of image transformations, and thus appears to be the most suitable of these three methods, given its accuracy when comparing features between both images, while maintaining a low time consumption. Furthermore, a comparison of the results obtained with respect to similar work allows us to increase the reliability of our methodology and the reach of our conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.