We demonstrate a system built using probabilistic techniques that allows for remarkably accurate localization across our entire office building using nothing more than the built-in signal intensity meter supplied by standard 802.11 cards. While prior systems have required significant investments of human labor to build a detailed signal map, we can train our system by spending less than one minute per office or region, walking around with a laptop and recording the observed signal intensities of our building's unmodified base stations. We actually collected over two minutes of data per office or region, about 28 man-hours of effort. Using less than half of this data to train the localizer, we can localize a user to the precise, correct location in over 95% of our attempts, across the entire building. Even in the most pathological cases, we almost never localize a user any more distant than to the neighboring office. A user can obtain this level of accuracy with only two or three signal intensity measurements, allowing for a high frame rate of localization results. Furthermore, with a brief calibration period, our system can be adapted to work with previously unknown user hardware. We present results demonstrating the robustness of our system against a variety of untrained time-varying phenomena, including the presence or absence of people in the building across the day. Our system is sufficiently robust to enable a variety of locationaware applications without requiring special-purpose hardware or complicated training and calibration procedures.
A key subproblem in the construction of location-aware systems is the determination of the position of a mobile device. This article describes the design, implementation and analysis of a system for determining position inside a building from measured RF signal strengths of packets on an IEEE 802.11b wireless Ethernet network. Previous approaches to location-awareness with RF signals have been severely hampered by non-Gaussian signals, noise, and complex correlations due to multi-path effects, interference and absorption. The design of our system begins with the observation that determining position from complex, noisy and non-Gaussian signals is a wellstudied problem in the field of robotics. Using only off-the-shelf hardware, we achieve robust position estimation to within a meter in our experimental context and after adequate training of our system. We can also coarsely determine our orientation and can track our position as we move. Our results show that we can localize a stationary device to within 1.5 meters over 80% of the time and track a moving device to within 1 meter over 50% of the time. Both localization and tracking run in real-time. By applying recent advances in probabilistic inference of position and sensor fusion from noisy signals, we show that the RF emissions from base stations as measured by off-the-shelf wireless Ethernet cards are sufficiently rich in information to permit a mobile device to reliably track its location.
Abstract-IEEE 802.11b wireless Ethernet is becoming the standard for indoor wireless communication. This paper proposes the use of measured signal strength of Ethernet packets as a sensor for a localization system. We demonstrate that off-the-shelf hardware can accurately be used for location sensing and real-time tracking by applying a Bayesian localization framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.