Dataset size is considered a major concern in the medical domain, where lack of data is a common occurrence. This study aims to investigate the impact of dataset size on the overall performance of supervised classification models. We examined the performance of six widely-used models in the medical field, including support vector machine (SVM), neural networks (NN), C4.5 decision tree (DT), random forest (RF), adaboost (AB), and naïve Bayes (NB) on eighteen small medical UCI datasets. We further implemented three dataset size reduction scenarios on two large datasets and analyze the performance of the models when trained on each resulting dataset with respect to accuracy, precision, recall, f-score, specificity, and area under the ROC curve (AUC). Our results indicated that the overall performance of classifiers depend on how much a dataset represents the original distribution rather than its size. Moreover, we found that the most robust model for limited medical data is AB and NB, followed by SVM, and then RF and NN, while the least robust model is DT. Furthermore, an interesting observation is that a robust machine learning model to limited dataset does not necessary imply that it provides the best performance compared to other models.
The novel coronavirus Severe Acute Respiratory Syndrome (SARS)-Coronavirus-2 (CoV-2) has resulted in an ongoing pandemic and has affected over 200 countries around the world. Mathematical epidemic models can be used to predict the course of an epidemic and develop methods for controlling it. As social contact is a key factor in disease spreading, modeling epidemics on contact networks has been increasingly used. In this work, we propose a simulation model for the spread of Coronavirus Disease 2019 (COVID-19) in Saudi Arabia using a network-based epidemic model. We generated a contact network that captures realistic social behaviors and dynamics of individuals in Saudi Arabia. The proposed model was used to evaluate the effectiveness of the control measures employed by the Saudi government, to predict the future dynamics of the disease in Saudi Arabia according to different scenarios, and to investigate multiple vaccination strategies. Our results suggest that Saudi Arabia would have faced a nationwide peak of the outbreak on 21 April 2020 with a total of approximately 26 million infections had it not imposed strict control measures. The results also indicate that social distancing plays a crucial role in determining the future local dynamics of the epidemic. Our results also show that the closure of schools and mosques had the maximum impact on delaying the epidemic peak and slowing down the infection rate. If a vaccine does not become available and no social distancing is practiced from 10 June 2020, our predictions suggest that the epidemic will end in Saudi Arabia at the beginning of November with over 13 million infected individuals, and it may take only 15 days to end the epidemic after 70% of the population receive a vaccine.
Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and treatment can lead to death or brain injury. Current diagnostic approaches include a painful and time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinometers. Since periodic monitoring is crucial, multiple efforts have been made to develop non-invasive diagnostic tools using a smartphone camera. However, existing works rely either on skin or eye images using statistical or traditional machine learning methods. In this paper, we adopt a deep transfer learning approach based on eye, skin, and fused images. We also trained well-known traditional machine learning models, including multi-layer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF), and compared their performance with that of the transfer learning model. We collected our dataset using a smartphone camera. Moreover, unlike most of the existing contributions, we report accuracy, precision, recall, f-score, and area under the curve (AUC) for all the experiments and analyzed their significance statistically. Our results indicate that the transfer learning model performed the best with skin images, while traditional models achieved the best performance with eyes and fused features. Further, we found that the transfer learning model with skin features performed comparably to the MLP model with eye features.
Previous studies in multi-agent systems have observed that varying the type of information that agents communicate, such as goals and beliefs, has a significant impact on the performance of the system with respect to different, usually conflicting, performance metrics, such as speed of solution, communication efficiency, and travel distance/cost. Therefore, when designing a communication strategy for a multi-agent system, it is unlikely that one strategy can perform well with respect to all of performance metrics. Yet, it is not clear in advance, which strategy will be the best with respect to each metric. With multi-agent systems being a common paradigm for building distributed systems in different domains, performance goals can vary from one application to the other according to the domain's specifications and requirements. To address this issue, this work proposes a genetic algorithm-based approach for learning a goaloriented communication strategy. The approach enables learning an effective communication strategy with respect to flexible, user-defined measurable performance goals. The learned strategy will determine what, when, and to whom information should be communicated during the course of task execution in order to improve the performance of the system with respect to the stated goal. Our preliminary evaluation shows that the proposed approach has promising results and the learned strategies have significant usefulness in improving the performance of the system with respect to the goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.