Thermodynamic properties of confined systems depend on sizes of the confinement domain due to quantum nature of particles. Here we show that shape also enters as a control parameter on thermodynamic state functions. By considering specially designed confinement domains, we separate the influences of quantum size and shape effects from each other and demonstrate how shape effects alone modify Helmholtz free energy, entropy and internal energy of a confined system. We propose an overlapped quantum boundary layer method to analytically predict quantum shape effects without even solving Schrödinger equation or invoking any other mathematical tools. Thereby we reduce a thermodynamic problem into a simple geometric one and reveal the profound link between geometry and thermodynamics. We report also a torque due to quantum shape effects. Furthermore, we introduce isoformal, shape preserving, process which opens the possibility of a new generation of thermodynamic cycles operating at nanoscale with unique features. arXiv:1807.02415v1 [cond-mat.mes-hall]
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flatten out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. arXiv:1602.05219v1 [cond-mat.stat-mech]
Information-theoretic arguments for the resolution of Maxwell's demon and Szilard engine paradoxes put forward explicitly by von Neumann, Brillouin and Rothstein during the beginning of 50's 5 . However, the major leap forward on the issue came in 1961 by Landauer who arXiv:1908.04400v1 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.