The present work aims to study the effect of nano-particles volume fraction of nano-fluid on the heat transfer during pool boiling with different values of heat flux. The concentration ratios by volume in demineralized water are taken as 0.02 %, 0.20 %, 0.40 %, 0.60, and 0.80 % for Al2O3 nano-particles and 0.02 %, 0.06 %, and 0.20 % for CuO nano-particles. Heat transfer coefficients for pool boiling were established experimentally for different values of volume fraction and heat flux. The heating element is made from an aluminum alloy (AL 6061) with a circular smooth surface of 100 mm diameter and 10 mm thickness. The nano-particles porous layer that builds up during boiling is observed by a scanning electron microscope of the heated surface before and after the boiling. The results demonstrate that the heat transfer rate depends on the concentration ratios and heat flux. Using nano-particles decreases the pool boiling heat transfer in comparison with demineralized water. Due to the deposition of nano-particles on the heated surface, lower heat transfer is obtained for a lower bubble departure compared with demineralized water for the small wall superheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.