Spiking neural networks (SNN) increasingly attract attention for their similarity to the biological neural system. Hardware implementation of spiking neural networks, however, remains a great challenge due to their excessive complexity and circuit size. This work introduces a novel optimization method for hardware friendly SNN architecture based on a modified rate coding scheme called Binary Streamed Rate Coding (BSRC). BSRC combines the features of both rate and temporal coding. In addition, by employing a built-in randomizer, the BSRC SNN model provides a higher accuracy and faster training. We also present SNN optimization methods including structure optimization and weight quantization. Extensive evaluations with MNIST SNNs demonstrate that the structure optimization of SNN (81-30-20-10) provides 183.19 times reduction in hardware compared with SNN (784-800-10), while providing an accuracy of 95.25%, a small loss compared with 98.89% and 98.93% reported in the previous works. Our weight quantization reduces 32-bit weights to 4-bit integers leading to further hardware reduction of 4 times with only 0.56% accuracy loss. Overall, the SNN model (81-30-20-10) optimized by our method shrinks the SNN’s circuit area from 3089.49 mm2 for SNN (784-800-10) to 4.04 mm2—a reduction of 765 times.
Optimizing the utilization factor of the system resources such as efficiency, bandwidth, and the storage capacity for cost reduction is one important aim of enormous amount of studies.
For the image compression one can use the embedded processors as the most suitable ones. This image compression schemes for images will be based on the Discrete Cosine Transform (DCT). This paper implements an efficient and effective algorithm for still image compression of relatively high signal to noise ratio. The implemented technique considers that only zeros of the zigzag scanning is the repeated runs. This results in possibility of zero byte of the Run Length Encoding (RLE) output elimination.Word-length reduction and higher compression ratio can be customized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.