Ampferer-type subduction is a term that refers to the foundering of hyper-extended continental or embryonic oceanic basins (i.e., ocean-continent transitions) at passive continental margins. The lithospheric mantle underlying these rift basins is mechanically weaker, less dense, and more fertile than the lithospheric mantle underlying bounded continents. Therefore, orogens resulting from the closure of a narrow, immature extensional system are essentially controlled by mechanical processes without significant thermal and lithologic changes. Self-consistent, spontaneous subduction initiation (SI) due to the density contrast between the lithosphere and the crust of ocean-continent transitions is unlikely to occur. Additional far-field external horizontal forces are generally required for the SI. When the lithosphere subducts, the upper crust or serpentinized mantle and sediments separate from the lower crust, which becomes accreted to the orogen, while the lower crust subducts into the asthenosphere. Subduction of the lower crust, which typically consists of dry lithologies, does not allow significant flux-melting within the mantle wedge, so arc magmatism does not occur. As a result of melting inhibition within the mantle wedge during Ampferer-type subduction zones, the mantle beneath the resulting orogenic belts is fertile and thus has a high potential for magma generation during a subsequent breakup (i.e., magma-rich collapse).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.