A number of recent studies of drainage relative permeability ratio by dynamic displacement have permeability ratio by dynamic displacement have indicated temperature sensitivity. Poston et al. found that the irreducible water saturation appeared to increase significantly with temperature-level increase and speculated that capillary pressure saturation data would also change to show this effect. Although there have been capillary pressure-saturation studies which show important pressure-saturation studies which show important differences between laboratory and reservoir conditions (presumably higher temperatures), the effects have usually been attributed to adsorption and desorption of polar components from the liquid phases. There appears to be no systematic studies phases. There appears to be no systematic studies of the effect of temperature level upon capillary pressure. pressure. Equipment was constructed to permit measuring capillary pressures for simple systems at temperatures ranging from room temperature to about 350 deg. F. Drainage and imbibition capillary pressure curves were measured for three consolidated pressure curves were measured for three consolidated sandstones and one limestone sample, at either three or four temperature levels form 70 deg to 325 deg F. Fluid used were a filtered white oil and distilled water. Results for the sandstone samples were similar. The practical irreducible water saturation increased significantly as temperature was raised from 70 deg F to the maximum temperature studies - about 325 deg F. Surprisingly, the hysteresis between drainage and imbibition cycles decreased as temperature increased and was nearly absent at 300 deg F. Results indicated that the sandstone samples became markedly more water-wet as temperature level increased. Results for the limestone sample were quite different. All capillary pressure-saturation curves for the various isotherms were found to lie within the envelope of the room-temperature drainage and imbibition curves. The main objective of this study was to determine whether the supposition of Poston et al. was correct. Results are in agreement with the previous dynamic displacement work. Introduction In 1967, Poston et al reported displacement experiments on unconsolidated sands at elevated temperatures and found that the irreducible water saturation increased with temperature increase. The oil viscosity appeared to have had no real effect on their results. Although less conclusive, practical residual oil saturations (to a producing practical residual oil saturations (to a producing water-oil ratio of 100) appeared to decrease with temperature increase. The results also indicated important increases in both oil and water relative permeabilities as temperature increased. This led permeabilities as temperature increased. This led Poston et al. to suggest that temperature affects. Poston et al. to suggest that temperature affects. the sand wettability. Sessile-drop contact angle measurements indicated that the water-oil-glass contact angle decreased with temperature increase. The results of Poston et al. regarding an increase in irreducible water saturation with temperature increase and the nondependence of this finding on the viscosity ratio deserve more attention. it is a well established concept in the literature that increasing water wetness of sands is reflected in an increase in the irreducible water saturation and an increase in oil recovery efficiency. The effect on a capillary pressure-saturation curve would be to cause a shift toward increasing irreducible wetting-phase saturation. if this is the case, then the studies of McNiel and Moss and Willman et al. should give partial credit for the added oil recovery efficiency involved in hot water flooding to the effect of temperature level upon wettability. In view of the potential importance of hot fluid injection for improving oil recovery and the lack of an adequate description of the flow process and thermodynamics involved, it was decided to study the speculation of Poston et al. that capillary pressure-saturation curves should be temperature pressure-saturation curves should be temperature dependent. This study concerns the effect of temperature level upon capillary pressure-saturation relationships for consolidated porous media. SPEJ p. 13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.