When exposed to environmental conditions, LCO can release Co cations, a known toxicant. In this study, we build on previous work (Bennett et al., Environ. Sci. Technol., 52, 5792-5802, 2018, Bennett et al., Inorg. Chem., 57, 13300-13311, 2018) using theory and modeling to understand the thermodynamic driving forces of ion release in water. We assess how the calculated predictions for ion release depend on aspects of the structural surface model. For example, we vary the number of atomic layers used to form the slab, we explore different surface terminations and hydroxyl group coverages, and we vary the periodic in-plane supercell to assess how ion release depends on the density of formed vacancies. We also benchmark the DFT + Thermodynamics modeling across a range of computational factors such as the choice of exchange correlation functional and pseudopotential type. Such assessment is critical, as there is no direct experimental information for comparison. We devise a generalizable scheme for predicting a threshold pH at which Co release from LCO becomes favorable. We put forward that this scheme could provide information about how much Co is released from LCO under variable pH conditions, and could therefore be used to inform macroscopic contaminant fate models.
When exposed to environmental conditions, LCO can release Co cations, a known toxicant. In this study, we build on previous work (Bennett et al., Environ. Sci. Technol., 52, 5792-5802, 2018, Bennett et al., Inorg. Chem., 57, 13300-13311, 2018) using theory and modeling to understand the thermodynamic driving forces of ion release in water. We assess how the calculated predictions for ion release depend on aspects of the structural surface model. For example, we vary the number of atomic layers used to form the slab, we explore different surface terminations and hydroxyl group coverages, and we vary the periodic in-plane supercell to assess how ion release depends on the density of formed vacancies. We also benchmark the DFT + Thermodynamics modeling across a range of computational factors such as the choice of exchange correlation functional and pseudopotential type. Such assessment is critical, as there is no direct experimental information for comparison. We devise a generalizable scheme for predicting a threshold pH at which Co release from LCO becomes favorable. We put forward that this scheme could provide information about how much Co is released from LCO under variable pH conditions, and could therefore be used to inform macroscopic contaminant fate models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.