As transistors become increasingly smaller and faster and noise margins become tighter, circuits and chip specially microprocessors tend to become more vulnerable to permanent and transient hardware faults. Most microprocessor designers focus on protecting memory elements among other parts of microprocessors against hardware faults through adding redundant error-correcting bits such as parity bits. How ever, the rate of soft errors in combinational parts of microprocessors is consider edas important as in sequential parts such as memory elements nowadays. The reason is that advances in scaling technology have led to reduced electrical masking .This paper proposes and evaluates a logic level fault-tolerant method based on parity for designing combinational circuits. Experimental results on a full adder circuit show that the proposed method makes the circuit fault-tolerant with less overhead in comparison with traditional methods. It will also be demonstrated that our proposed method enables the traditional TMR method to detect multiple faults in addition to single fault masking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.