This study proposes an optimized hybrid visual servoing approach to overcome the imperfections of classical two-dimensional, three-dimensional and hybrid visual servoing methods. These imperfections are mostly convergence issues, non-optimized trajectories, expensive calculations and singularities. The proposed method provides more efficient optimized trajectories with shorter camera path for the robot than image-based and classical hybrid visual servoing methods. Moreover, it is less likely to lose the object from the camera field of view, and it is more robust to camera calibration than the classical position-based and hybrid visual servoing methods. The drawbacks in two-dimensional visual servoing are mostly related to the camera retreat and rotational motions. To tackle these drawbacks, rotations and translations in Z-axis have been separately controlled from three-dimensional estimation of the visual features. The pseudo-inverse of the proposed interaction matrix is approximated by a neuro-fuzzy neural network called local linear model tree. Using local linear model tree, the controller avoids the singularities and ill-conditioning of the proposed interaction matrix and makes it robust to image noises and camera parameters. The proposed method has been compared with classical image-based, position-based and hybrid visual servoing methods, both in simulation and in the real world using a 7-degree-of-freedom arm robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.