Automotive emission is becoming a critical threat to today's human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In this study, Taguchi quality engineering method is employed, and optimum gear ratios in a five speed gear box is obtained. A table of various gear ratios is suggested by design of experiment techniques. Fuel consumption is calculated through simulating the corresponding combustion dynamics model. Using a 95 % confidence level, optimal parameter combinations are determined using the Taguchi method. The level of importance of the parameters on the fuel efficiency is resolved using the analysis of signal-to-noise ratio as well as analysis of variance.
This study proposes a sustainable closed-loop supply chain under uncertainty to create a response to the COVID-19 pandemic. In this paper, a novel stochastic optimization model integrating strategic and tactical decision-making is presented for the sustainable closed-loop supply chain network design problem. This paper for the first time implements the concept of sustainable closed-loop supply chain for the application of ventilators using a stochastic optimization model. To make the problem more realistic, most of the parameters are considered to be uncertain along with the normal probability distribution. Since the proposed model is more complex than majority of previous studies, a hybrid whale optimization algorithm as an enhanced metaheuristic is proposed to solve the proposed model. The efficiency of the proposed model is tested in an Iranian medical ventilator production and distribution network in the case of the COVID-19 pandemic. The results confirm the performance of the proposed algorithm in comparison with two other similar algorithms based on different multi-objective criteria. To show the impact of sustainability dimensions and COVID-19 pandemic for our proposed model, some sensitivity analyses are done. Generally, the findings confirm the performance of the proposed sustainable closed-loop supply chain for the pandemic cases like COVID-19.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-021-16077-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.