This paper presents the development of a comprehensive composite beam-column fiber element for large displacement nonlinear inelastic analysis of concrete-filled steel tube ͑CFT͒ columns. The bond/slip formulation represents the interaction between concrete and steel over the entire contact surface between the two materials. Thus, the modeling accounts for the two factors that cause the slippage between steel shell and concrete core. The first factor is the difference between axial elongation of the steel shell and the concrete core, and the second is the difference between curvatures in the cross section for the concrete core and the steel shell. These effects are integrated over the perimeter and are added to the virtual work expression of the basic element. Furthermore, the constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. A 13 degree of freedom ͑DOF͒ element with three nodes, which has five DOF per end node and three DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape functions for the transverse directions are used. The model is implemented to analyze several CFT columns under constant concentric axial load and cyclic lateral load. The effect of semi-and perfect bond is investigated and compared with experiments. Good correlation has been found between experimental results and theoretical analyses. The results show that the use of a studded or ribbed steel shell causes greater ultimate strength and higher dissipation of energy than the columns with nonstudded steel shells.
The harmonic displacement response of a beam is utilized as the input signal function in wavelet analysis. Sudden changes in the spatial variation of transformed response identify the location of damages and defects. The damage incurred causes a change in the stiffness or mass of the beam. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this article, it is shown that using harmonic response is superior to the static deflection response and this approach is more effective in the presence of noise and more sensitive to the versatility of the applied harmonic loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.