Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
The widespread antigenic changes lead to the emergence of a new type of coronavirus (CoV) called as severe acute respiratory syndrome (SARS)-CoV-2 that is immunologically different from the previous circulating species. Angiotensin-converting enzyme-2 (ACE-2) is one of the most important receptors on the cell membrane of the host cells (HCs) which its interaction with spike protein (SP) with a furincleavage site results in the SARS-CoV-2 invasion. Hence, in this review, we presented an overview on the interaction of ACE-2 and furin with SP. As several kinds of CoVs, from various genera, have at their S1/S2 binding site a preserved site, we further surveyed the role of furin cleavage site (FCS) on the life cycle of the CoV. Furthermore, we discussed that the small molecular inhibitors can limit the interaction of ACE-2 and furin with SP and can be used as potential therapeutic platforms to combat the spreading CoV epidemic. Finally, some ongoing challenges and future prospects for the development of potential drugs to promote targeting specific activities of the CoV were reviewed. In conclusion, this review may pave the way for providing useful information about different compounds involved in improving the effectiveness of CoV vaccine or drugs with minimum toxicity against human health.
ARTICLE HISTORY
Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients’ brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.