The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an ␣-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display -sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a -sheet structure. Dynamic light scattering revealed that the presence of -sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
Objective: This study was designed to determine the efficacy of ivermectin, an FDA-approved drug, in producing clinical benefits and decreasing the viral load of SARS-CoV-2 among asymptomatic subjects that tested positive for this virus in Lebanon. Methods: A randomized controlled trial was conducted in 100 asymptomatic Lebanese subjects that have tested positive for SARS-CoV2. Fifty patients received standard preventive treatment, mainly supplements, and the experimental group received a single dose (according to body weight) of ivermectin, in addition to the same supplements the control group received. Results: There was no significant difference (p = 0.06) between Ct-values of the two groups before the regimen was started (day zero), indicating that subjects in both groups had similar viral loads. At 72 h after the regimen started, the increase in Ct-values was dramatically higher in the ivermectin than in the control group. In the ivermectin group, Ct increased from 15.13 ± 2.07 (day zero) to 30.14 ± 6.22 (day three; mean ± SD), compared to the control group, where the Ct values increased only from 14.20 ± 2.48 (day zero) to 18.96 ± 3.26 (day three; mean ± SD). Moreover, more subjects in the control group developed clinical symptoms. Three individuals (6%) required hospitalization, compared to the ivermectin group (0%). Conclusion: Ivermectin appears to be efficacious in providing clinical benefits in a randomized treatment of asymptomatic SARS-CoV-2-positive subjects, effectively resulting in fewer symptoms, lower viral load and reduced hospital admissions. However, larger-scale trials are warranted for this conclusion to be further cemented.
Aim:In a search for finding novel therapeutic agents, extracts from an endemic Lebanese plant, Astragalus angulosus, were evaluated for their potential in-vitro antibacterial and antibiofilm activities against three Gram-positive bacterial strains; Staphylococcus epidermidis (CIP444), Staphylococcus aureus (ATCC25923), and Enterococcus faecalis (ATCC29212); in addition to two Gram-negative strains, Escherichia coli (ATCC35218) and Pseudomonas aeruginosa (ATCC27853).Materials and Methods:The plant was collected in April of 2013 and divided into several different portions, then its extracts were obtained by maceration using two different solvents. Extract analysis followed directly where microtiter broth dilution method was employed to assess antibacterial activity, while antibiofilm potential was tested using colorimetric method.Results:Whole plant ethanolic extract showed the highest bacteriostatic effect at a concentration of 12.78 mg/ml and also was the most versatile exerting its effect against 3 different strains. Other extracts also exhibited an effect but at higher concentrations and each against a single strain. Regarding antibiofilm activity, the majority of the extracts were able to eradicate >50% of S. epidermidis preformed biofilm, where the highest activity was obtained with flower fraction extracted in water, achieving 67.7% biofilm eradication at 0.2 mg/ml.Conclusions:This plant possesses a promising potential in regard to eradicating bacteria and their biofilms and it is the first contributing step of establishing a library for the endemic Lebanese plants in this domain.
The journal retracts the article, Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.