This paper presents a new islanding detection technique based on an artificial neural network (ANN) for a doubly fed induction wind turbine (DFIG). This technique takes advantage of ANN as pattern classifiers. Five different ANN systems are presented in this paper based on various inputs: three phase power, phase voltage, phase current, neutral voltage, and neutral current. An ANN structure is trained for each input, and the comparison between the different structures is presented. Feedforward ANN structures are used for the five systems. Three different learning algorithms are used: backpropagation and two artificial optimization techniques: Genetic Algorithm (GA) and Cuckoo optimization algorithm. For each method in each training technique, the results and the cost function are presented. The comparison of different inputs different algorithms is conducted. MATLAB 2020a is used to simulate the ANN structure and code the training algorithms. A detailed discussion of the input sample rate has also been manipulated to make the computational burden a factor in assessing the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.