Hand gestures are a form of nonverbal communication that can be used in several fields such as communication between deaf-mute people, robot control, human–computer interaction (HCI), home automation and medical applications. Research papers based on hand gestures have adopted many different techniques, including those based on instrumented sensor technology and computer vision. In other words, the hand sign can be classified under many headings, such as posture and gesture, as well as dynamic and static, or a hybrid of the two. This paper focuses on a review of the literature on hand gesture techniques and introduces their merits and limitations under different circumstances. In addition, it tabulates the performance of these methods, focusing on computer vision techniques that deal with the similarity and difference points, technique of hand segmentation used, classification algorithms and drawbacks, number and types of gestures, dataset used, detection range (distance) and type of camera used. This paper is a thorough general overview of hand gesture methods with a brief discussion of some possible applications.
Abstract:The objective of this study was to design a non-invasive system for the observation of respiratory rates and detection of apnoea using analysis of real time image sequences captured in any given sleep position and under any light conditions (even in dark environments). A Microsoft Kinect sensor was used to visualize the variations in the thorax and abdomen from the respiratory rhythm. These variations were magnified, analyzed and detected at a distance of 2.5 m from the subject. A modified motion magnification system and frame subtraction technique were used to identify breathing movements by detecting rapid motion areas in the magnified frame sequences. The experimental results on a set of video data from five subjects (3 h for each subject) showed that our monitoring system can accurately measure respiratory rate and therefore detect apnoea in infants and young children. The proposed system is feasible, accurate, safe and low computational complexity, making it an efficient alternative for non-contact home sleep monitoring systems and advancing health care applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.