All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.
Fracture is one of the most important geological phenomena that affect the production of hydrocarbon compounds in broken carbonate reservoirs. However, fracture controlling factors must be combined with well data to achieve accurate fracture modeling. Therefore, structural data, drilling data, well flow diagrams, cores data, wells production data, and dynamic reservoir data have been considered here. Finally, by combining the above-mentioned information and through statistical and mathematical methods, the mechanism of fracture creation, general trends, and dominant fracture patterns are determined. These patterns are directly related to the tectonic regime and the stresses governing the region. For the first time, in this paper, we divided Zubair carbonate gas reservoir into 10 zones based on porosity and water saturation, and shale volume variation. We conclude that just four-zone of these are economic producible. Besides, the dominant lithology of this formation is more than limestone and a small number of thin shale layers. We defined types of cross-sectional petro-physical graphs and confirmed them by the geological graphic diagram prepared at the head.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.