The transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur through an airborne route, in addition to contaminated surfaces and objects. In hospitals, it has been confirmed by several studies that SARS-CoV-2 can contaminate surfaces and medical equipment especially in hospitals dedicated to coronavirus disease 2019 (COVID-19) patients. The aim of this study was to detect the contamination of hands, objects, and surfaces in isolation rooms and also in outpatients' clinics in hospitals and polyclinics. Environmental contamination of public high-touch surfaces in public facilities was also investigated during an active COVID-19 pandemic. Random swabs were also taken from public shops, pharmacies, bakeries, groceries, banknotes, and automated teller machines (ATMs). Samples were analyzed for SARS-CoV-2 positivity using real-time polymerase chain reaction.In the COVID-19 regional reference hospital, only 3 out of 20 samples were positive for SARS-CoV-2 RNA. Hand swabs from SARS-CoV-2-positive patients in isolation rooms were occasionally positive for viral RNA. In outpatients' clinics, door handles were the most contaminated surfaces. Dental chairs, sinks, keyboards, ophthalmoscopes, and laboratory equipment were also contaminated. Although no positive swabs were found in shops and public facilities, random ATM swabs returned a positive result for SARS-CoV-2. Although there is no longer a focus on COVID-19 wards and isolation hospitals, more attention is required to decontaminate frequently touched surfaces in health-care facilities used by patients not diagnosed with COVID-19. Additionally, high-touch public surfaces such as ATMs require further disinfection procedures to limit the transmission of the infection.
This research aimed to develop innovative self-nanoemulsifying chewable tablets (SNECT) to increase oral bioavailability of tadalafil (TDL), a nearly insoluble phosphodiesterase-5 inhibitor. Cinnamon essential oil, PEG 40 hydrogenated castor oil (Cremophor ® RH 40), and polyethylene glycol 400 served as the oil, surfactant, and cosurfactant in the nanoemulsifying system, respectively. Primary liquid self-nanoemulsifying delivery systems (L-SNEDDS) were designed using phase diagrams and tested for dispersibility, droplet size, self-emulsifying capability, and thermodynamic stability. Adsorption on a carrier mix of silicon dioxide and microcrystalline cellulose was exploited to solidify the optimum L-SNEDDS formulation as self-nanoemulsifying granules (SNEG). Lack of crystalline TDL within the granules was verified by DSC and XRPD. SNEG were able to create a nanoemulsion instantaneously (165 nm), a little larger than the original nanoemulsion (159 nm). SNECT were fabricated by compressing SNEG with appropriate excipients. The obtained SNECT retained their quick dispersibility dissolving 84% of TDL within 30 min compared to only 18% dissolution from tablets of unprocessed TDL. A pharmacokinetic study in Sprague–Dawley rats showed a significant increase in Cmax (2.3-fold) and AUC0–24 h (5.33-fold) of SNECT relative to the unprocessed TDL-tablet (p < 0.05). The stability of TDL-SNECT was checked against dilutions with simulated GI fluids. In addition, accelerated stability tests were performed for three months at 40 ± 2 °C and 75% relative humidity. Results revealed the absence of obvious changes in size, PDI, or other tablet parameters before and after testing. In conclusion, current findings illustrated effectiveness of SNECT to enhance TDL dissolution and bioavailability in addition to facilitating dose administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.