The cutting-edge studies on Automatic Speech Recognition approach have reported exceptional accuracy rates that are even comparable to human transcribersposing a question if machine has reached human performance. Automatic Speech Recognition can be used as a biometric authentication technique, which is essential in ciphering many applications used. In light of the Arabic language, only few studies have proposed to assess the effectiveness of using Automatic Speech Recognition in Arabic language; therefore, this study aims to implement Arabic speaker recognition using three different algorithms, including (i) Dynamic Time Warping (DTW), (ii) Gaussian mixture model (GMM), and (iii) Support Vector Machine (SVM). To measure the effectiveness of these algorithm in recognizing the Arabic speech, two datasets are used to train and test them, which are: (i) speech agent archive, and (ii) Arabic speech corpus. The results reveled that the DTW outperforms the GMM and SVM in terms of accuracy, precision, recall and fmeasure, as it achieves 95.7%, 96%, and 95%, and 96%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.