Aging models are important input into wind farm maintenance and financial viability models. Aging of wind turbines depends on many factors, including both ambient and usage conditions. This paper presents a virtual age based maintenance model for wind turbines considering the effect of wind speed and ambient air temperature on turbine aging. Two maintenance thresholds (i.e., corrective threshold and preventive threshold) and three repair actions (i.e., unscheduled corrective, scheduled corrective and preventive actions) are integrated into the maintenance model. The objective is to determine the optimal thresholds values that minimize the expected total maintenance costs. A discreet time simulation model is developed to produce 20 years of weather and usage scenarios for a single onshore wind turbine. The optimization model is formulated as a mixed-integer nonlinear problem and solved using the Nelder–Mead method. A numerical example is presented to highlight the benefits of the proposed approach. Compared with traditional age-based maintenance, the proposed approach can achieve improvement in both availability and costs. The results show up to 50% reduction in maintenance cost as well as the significance of the effects of wind speed and ambient air temperature in maintenance planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.