With the rapid increase and complexity of IPv6 network traffic, the traditional intrusion detection system Snort detects DoS attacks based on specific rules, which reduces the detection performance of IDS. To solve the DoS intrusion detection problem in the IPv6 network environment, the lightweight KNN optimization algorithm in machine learning is adopted. First, the double dimensionality reduction of features is achieved through the information gain rate, and discrete features with more subfeatures are selected and aggregated to further dimensionality reduction and feature dimension of the actual operation. Secondly, the information gain rate is used as the weight to optimize the sample Euclidean distance measurement. Based on the proposed measure of the reverse distance influence, the classification decision algorithm of the KNN algorithm is optimized to make the detection technology better. The effect is further improved. The experimental results show that the traditional TAD-KNN algorithm based on average distance and the GR-KNN algorithm that only optimizes the distance definition, the GR-AD-KNN algorithm can not only improve the overall detection performance in the detection of IPv6 network traffic characteristics but also for small groups of samples. As a result, classification has better detection results.
As 5G and other technologies are widely used in the Internet of Vehicles, intrusion detection plays an increasingly important role as a vital detection tool for information security. However, due to the rapid changes in the structure of the Internet of Vehicles, the large data flow, and the complex and diverse forms of intrusion, traditional detection methods cannot ensure their accuracy and real-time requirements and cannot be directly applied to the Internet of Vehicles. A new AA distributed combined deep learning intrusion detection method for the Internet of Vehicles based on the Apache Spark framework is proposed in response to these problems. The cluster combines deep-learning convolutional neural network (CNN) and extended short-term memory (LSTM) network to extract features and data for detection of car network intrusion from large-scale car network data traffic and discovery of abnormal behavior. The experimental results show that compared with other existing models, the algorithm of this model can reach 20 in the fastest time, and the accuracy rate is up to 99.7%, with a good detection effect.
In recent years, federated learning has received widespread attention as a technology to solve the problem of data islands, and it has begun to be applied in fields such as finance, healthcare, and smart cities. The federated learning algorithm is systematically explained from three levels. First, federated learning is defined through the definition, architecture, classification of federated learning, and comparison with traditional distributed knowledge. Then, based on machine learning and deep learning, the current types of federated learning algorithms are classified, compared, and analyzed in-depth. Finally, the communication from the perspectives of cost, client selection, and aggregation method optimization, the federated learning optimization algorithms are classified. Finally, the current research status of federated learning is summarized. Finally, the three major problems and solutions of communication, system heterogeneity, and data heterogeneity faced by federated learning are proposed and expectations for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.