Introduction: Medical image processing aimed at reducing human error rates attracted many researchers. The Segmentation of magnetic resonance image for tumor detection is one of the recognized challenges in the treatment of the disease. Considering the importance of this issue in the present study, the diagnosis of brain tumor is considered.Material and methods: One of the most popular and most widely used methods in the field of segmentation of images of resonance imaging of the brain is the k-means clustering algorithm, which, despite the diagnosis of a tumor, fall in to local optimum problem, followed by a reduction in the accuracy of the diagnosis tumors are malignant. In this study, we aimed to solve this problem and subsequently increase the accuracy of diagnosis of malignant tumors, a GA-clustering combination of clustering based on k-means and genetic algorithms.Results: How to combine in the way that the genetic algorithm is applied to each repetition of the K-means algorithm and, by scanning more in the space of the answer, is trying to find higher quality cluster centers. The effectiveness of the proposed method has been investigated on a number of images of BRATS standard collections. It is also compared with the K-means algorithm.Conclusion: The results show that the proposed algorithm provides better results than the K-means algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.