Duchenne Muscular Dystrophy is a devastating disease caused by the absence of a functional rod-shaped cytoplasmic protein called dystrophin. Several avenues are being developed aimed to restore dystrophin expression in boys affected by this X-linked disease. However, its complete cure is likely to need combinational approaches which may include regimes aimed at restoring muscle mass. Augmenting muscle growth through the manipulation of the Myostatin/Activin signalling axis has received much attention. However, we have recently shown that while manipulation of this axis in wild type mice using the sActRIIB ligand trap indeed results in muscle growth, it also had a detrimental impact on the testis. Here we examined the impact of administering a powerful Myostatin/Activin antagonist in two mouse models of Duchenne Muscular Dystrophy. We report that whilst the impact on muscle growth was not always positive, both models showed attenuated testis development. Sperm number, motility and ultrastructure were significantly affected by the sActRIIB treatment. Our report suggests that interventions based on Myostatin/Activin should investigate off-target effects on tissues as well as muscle.
Objective: To review the safety and efficacy of sodium phenylbutyrate and taurursodiol (SP + T) in slowing progression of amyotrophic lateral sclerosis (ALS) compared with pre-existing therapies. Data Sources: A PubMed (from January 1, 2009, to April 13, 2023) and ClinicalTrials.gov search conducted using sodium phenylbutyrate, taurursodiol, AMX0035, riluzole, and edaravone. Additional articles were identified by hand from references. Data Selection and Data Extraction: This included English-language articles evaluating SP + T efficacy or safety in humans for decreasing neuronal death and slowing the progression of ALS. Data Synthesis: In one phase II clinical trial that encompassed an open-label extension phase, disease severity, assessed by the rate of decline in overall score on the Amyotrophic Lateral Sclerosis Functional Rating Scale–Revised with higher scores indicating more functional ability, was –1.24 points per month with active drug and –1.66 points per month with placebo (difference, 0.42 points per month; 95% CI, 0.03-0.81; P = 0.03). Post hoc analysis found survival benefit of median 4.8 months with active medication compared with placebo. Relevance to Patient Care and Clinical Practice in Comparison With Existing Drugs: SP + T is a new US Food and Drug Administration–approved oral suspension for the treatment of ALS. Patients who received active medication through the phase II trial showed decreased rates of disease progression. Overall, SP + T could be considered a potential agent for the treatment of ALS which has a high unmet need. Conclusion: SP + T is an option for the treatment of ALS; however, additional data regarding efficacy in phase III trials with long-term safety profile considerations, as well as trials to compare current therapy with SP + T, are needed.
AimsAccurate assessment of 1p/19q codeletion status in diffuse gliomas is of paramount importance for diagnostic, prognostic and predictive purposes. While targeted next generation sequencing (NGS) has been widely implemented for glioma molecular profiling, its role in detecting structural chromosomal variants is less well established, requiring supplementary informatic tools for robust detection. Herein, we evaluated a commercially available amplicon-based targeted NGS panel (Oncomine Comprehensive Assay v3) for the detection of 1p/19q losses in glioma tissues using an Ion Torrent platform and the standard built-in NGS data analysis pipeline solely.MethodsUsing as little as 20 ng of DNA from formalin-fixed paraffin-embedded tissues, we analysed 25 previously characterised gliomas for multi-locus copy number losses (CNLs) on 1p and 19q, including 11 oligodendrogliomas (ODG) and 14 non-oligodendroglial (non-ODG) controls. Fluorescence in-situ hybridisation (FISH) was used as a reference standard.ResultsThe software confidently detected combined contiguous 1p/19q CNLs in 11/11 ODGs (100% sensitivity), using a copy number cut-off of ≤1.5 and a minimum of 10 amplicons covering the regions. Only partial non-specific losses were identified in non-ODGs (100% specificity). Copy number averages of ODG and non-ODG groups were significantly different (p<0.001). NGS was concordant with FISH and was superior to it in distinguishing partial from contiguous losses indicative of whole-arm chromosomal deletion.ConclusionsThis commercial NGS panel, along with the standard Ion Torrent algorithm, accurately detected 1p/19q losses in ODG samples, obviating the need for specialised custom-made informatic analyses. This can easily be incorporated into routine glioma workflow as an alternative to FISH.
Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.