Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
Motivated by applications in supply chain, network management, and machine learning, a steady stream of research has been devoted to studying various computational aspects of the ordered k-median problem, which subsumes traditional facility location problems (such as median, center, p-centrum, etc.) through a unified modeling approach. Given a finite metric space, the objective is to locate k facilities in order to minimize the ordered median cost function. In its general form, this function penalizes the coverage distance of each vertex by a multiplicative weight, depending on its ranking (or percentile) in the ordered list of all coverage distances. While antecedent literature has focused on mathematical properties of ordered median functions, integer programming methods, various heuristics, and special cases, this problem was not studied thus far through the lens of approximation algorithms. In particular, even on simple network topologies, such as trees or line graphs, obtaining non-trivial approximation guarantees is an open question. The main contribution of this paper is to devise the first provably-good approximation algorithms for the ordered k-median problem. We develop a novel approach that relies primarily on a surrogate model, where the ordered median function is replaced by a simplified ranking-invariant functional form, via efficient enumeration. Surprisingly, while this surrogate model is Ω(n Ω(1))-hard to approximate on general metrics, we obtain an O(log n)approximation for our original problem by employing local search methods on a smooth variant of the surrogate function. In addition, an improved guarantee of 2 + is obtained on tree metrics by optimally solving the surrogate model through dynamic programming. Finally, we show that the latter optimality gap is tight up to an O() term.
Consider-then-choose models, borne out by empirical literature in marketing and psychology, explain that customers choose among alternatives in two phases, by first screening products to decide which alternatives to consider and then ranking them. In this paper, we develop a dynamic programming framework to study the computational aspects of assortment optimization under consider-then-choose premises. Although nonparametric choice models generally lead to computationally intractable assortment optimization problems, we are able to show that for many empirically vetted assumptions on how customers consider and choose, our resulting dynamic program is efficient. Our approach unifies and subsumes several specialized settings analyzed in previous literature. Empirically, we demonstrate the predictive power of our modeling approach on a combination of synthetic and real industry data sets, where prediction errors are significantly reduced against common parametric choice models. In synthetic experiments, our algorithms lead to practical computation schemes that outperform a state-of-the-art integer programming solver in terms of running time, in several parameter regimes of interest. This paper was accepted by Yinyu Ye, optimization.
We introduce a new optimization model, dubbed the display optimization problem, that captures a common aspect of choice behavior, known as the framing bias. In this setting, the objective is to optimize how distinct items (corresponding to products, web links, ads, etc.) are being displayed to a heterogeneous audience, whose choice preferences are influenced by the relative locations of items. Once items are assigned to vertically differentiated locations, customers consider a subset of the items displayed in the most favorable locations before picking an alternative through multinomial logit choice probabilities. The main contribution of this paper is to derive a polynomial-time approximation scheme for the display optimization problem. Our algorithm is based on an approximate dynamic programming formulation that exploits various structural properties to derive a compact state space representation of provably near-optimal item-to-position assignment decisions. As a byproduct, our results improve on existing constant-factor approximations for closely related models and apply to general distributions over consideration sets. We develop the notion of approximate assortments that may be of independent interest and applicable in additional revenue management settings. Lastly, we conduct extensive numerical studies to validate the proposed modeling approach and algorithm. Experiments on a public hotel booking data set demonstrate the superior predictive accuracy of our choice model vis-à-vis the multinomial logit choice model with location bias, proposed in earlier literature. In synthetic computational experiments, our approximation scheme dominates various benchmarks, including natural heuristics—greedy methods, local search, priority rules—and state-of-the-art algorithms developed for closely related models. This paper was accepted by Yinyu Ye, optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.