A novel coronavirus SARS-CoV-2 causing Coronavirus disease 2019 (COVID-19) has entered the human population and has spread rapidly around the world in the first half of 2020 causing a global pandemic. The virus uses its spike glycoprotein receptor-binding domain to interact with host cell angiotensin-converting enzyme 2 (ACE2) sites to initiate a cascade of events that culminate in severe acute respiratory syndrome in some individuals. In efforts to curtail viral spread, authorities initiated far-reaching lockdowns that have disrupted global economies. The scientific and medical communities are mounting serious efforts to limit this pandemic and subsequent waves of viral spread by developing preventative vaccines and repurposing existing drugs as potential therapies. In this review, we focus on the latest developments in COVID-19 vaccine development, including results of the first Phase I clinical trials and describe a number of the early candidates that are emerging in the field. We seek to provide a balanced coverage of the seven main platforms used in vaccine development that will lead to a desired target product profile for the "ideal" vaccine. Using tales of past vaccine discovery efforts that have taken many years or that have failed, we temper over exuberant enthusiasm with cautious optimism that the global medical community will reach the elusive target to treat COVID-19 and end the pandemic.
SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) has wreaked havoc during the global pandemic of 2020 infecting millions and leaving over a half million dead. As a new virus, not previously in the human population, but with similarities to other coronaviruses causing severe acute respiratory distress syndrome (SARS/ARDS), and no known treatments, the race to re-purpose existing drugs and to enlist novel therapeutics is underway. In the half-year since the first cases, we have acquired substantial knowledge of this virus and the clinical course of COVID-19 progression. Results from early clinical trials have revealed two treatments (remdesivir, dexamethasone) that mitigate disease progression but clearly, there is much room for improvement. Initial case reports indicated many succumb to COVID-19 of hypoxic respiratory failure due to ARDS. However, ensuing studies revealed an atypical, immune cell-sequestered, vasculature-inflamed state leading to multiorgan thrombotic complications and end organ failure likely due to hyperinflammatory host responses. This Perspective focuses on a potential mechanism for a key COVID-19 disease progression turning point related to vascular and airway inflammation. The leukotriene lipid mediators have been overlooked with discussion centering on cytokine storms unleashing the deadly form of COVID-19. Leukotrienes possess some of the most potent known activities on immune cell trafficking and vascular leakage. We offer a simple treatment paradigm using two generic drugs targeting the hyperinflammatory response that characterizes the turning point from mild to severe/critical COVID-19 by targeting leukotriene biosynthesis with zileuton (Zyflo ® controlled release formulation) and antagonism of the cysteinyl leukotriene 1 receptor with montelukast (Singulair ®).
In only a few months after initial discovery in Wuhan, China, SARS-CoV-2 and the associated COVID-19 disease has become a global pandemic causing significant mortality and morbidity. In the absence of vaccines and effective therapeutics, reliable serological testing can be a key element of public health policy to control further spread of the disease and gradually ease quarantine measures. However, prior to launch of large-scale seroprevalence studies to assess herd immunity, it is critical to understand the limits and potential of current SARS-CoV-2 serological tests on the market. In this study, we provide an overview of serological testing and conduct a systematic review of independent evaluations of SARS-CoV-2 serological tests performance. Our findings show significant variability in the accuracy of marketed tests and highlight several lab-based and point-of-care rapid diagnostic tests with high performance level in detecting SRAS-CoV-2 specific antibodies. The findings of this review highlight the need for ongoing independent evaluations of commercialized COVID-19 diagnostic tests.
The coronavirus SARS-CoV-2, which causes Coronavirus disease 2019 (COVID-19), has infected more than 100 million people globally and caused over 2.5 million deaths in just over one year since its discovery in Wuhan, China in December 2019. The pandemic has evoked widespread collateral damage to societies and economies, and has destabilized mental health and well-being. Early in 2020, unprecedented efforts went into the development of vaccines that generate effective antibodies to the SARS-CoV-2 virus. Teams developing twelve candidate vaccines, based on four platforms (messenger RNA, non-replicating viral vector, protein/virus-like particle, and inactivated virus) had initiated or announced the Phase III clinical trial stage by early November 2020, with several having received emergency use authorization in less than a year. Vaccine rollout has proceeded around the globe. Previously, we and others had proposed a target product profile (TPP) for ideal/optimal and acceptable/minimal COVID-19 vaccines. How well do these candidate vaccines stack up to a harmonized TPP? Here, we perform a comparative analysis in several categories of these candidate vaccines based on the latest available trial data and highlight the early successes as well as the hurdles and barriers yet to be overcome for ending the global COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.