The background method is a widely used technique to bound mean properties of turbulent flows rigorously. This work reviews recent advances in the theoretical formulation and numerical implementation of the method. First, we describe how the background method can be formulated systematically within a broader ‘auxiliary function’ framework for bounding mean quantities, and explain how symmetries of the flow and constraints such as maximum principles can be exploited. All ideas are presented in a general setting and are illustrated on Rayleigh–Bénard convection between stress-free isothermal plates. Second, we review a semidefinite programming approach and a timestepping approach to optimizing bounds computationally, revealing that they are related to each other through convex duality and low-rank matrix factorization. Open questions and promising directions for further numerical analysis of the background method are also outlined. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
We obtain an analytical bound on the non-dimensional mean vertical convective heat flux $\langle w T \rangle$ between two parallel boundaries driven by uniform internal heating. We consider two configurations. In the first, both boundaries are held at the same constant temperature and $\langle wT \rangle$ measures the asymmetry of the heat fluxes escaping the layer through the top and bottom boundaries. In the second configuration, the top boundary is held at constant temperature, the bottom one is perfectly insulating, and $\langle wT \rangle$ is related to the difference between the horizontally-averaged temperatures of the two boundaries. For the first configuration, Arslan et al. (J. Fluid Mech., vol. 919, 2021, p. A15) recently provided numerical evidence that Rayleigh-number-dependent corrections to the only known rigorous bound $\langle w T \rangle \leq 1/2$ may be provable if the classical background method is augmented with a minimum principle stating that the fluid's temperature is no smaller than that of the top boundary. Here, we confirm this fact rigorously for both configurations by proving bounds on $\langle wT \rangle$ that approach $1/2$ exponentially from below as the Rayleigh number is increased. The key to obtaining these bounds is inner boundary layers in the background fields with a particular inverse-power scaling, which can be controlled in the spectral constraint using Hardy and Rellich inequalities. These allow for qualitative improvements in the analysis that are not available to standard constructions.
We prove rigorous scaling laws for measures of the vertical heat transport enhancement in two models of convection driven by uniform internal heating at infinite Prandtl number. In the first model, a layer of incompressible fluid is bounded by horizontal plates held at the same constant temperature and convection reduces the fraction of the total dimensionless heat input per unit volume and time escaping the layer through the bottom boundary. We prove that this fraction decreases no faster than O( R−2), where R is a “flux” Rayleigh number quantifying the strength of the internal heating relative to diffusion. The second model, instead, has a perfectly insulating bottom boundary, so all heat must escape through the top one. In this case, we prove that the Nusselt number, defined as the ratio of the total-to-conductive vertical heat flux, grows no faster than O( R4). These power-law bounds improve on exponential results available for fluids with finite Prandtl number. The proof combines the background method with a minimum principle for the fluid’s temperature and with Hardy–Rellich inequalities to exploit the link between the vertical velocity and temperature available at infinite Prandtl number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.